

NEW OPERATIONS ON VAGUE IDEALS OVER LATTICES

K.Reena and Sr. I.Arockiarani

Department of Mathematics, Nirmala College for women, Coimbatore, India

ABSTRACT

In this paper we introduced some operations on Vague set of L and discussed some elementary results. Further, we applied these operations on Vague ideal of L and investigated their lattice structures.

Mathematics Subject Classification: 20N20, 08A99, 03E72.

1. INTRODUCTION

In 1993 W.L.Gau and D.J.Buehrer[9] Proposed the theory of Vague sets as an improvement of theory of Fuzzy sets in approximating the real life situation. Vague sets are higher order Fuzzy sets. A Vague set A in the universe of discourse U is a Pair $(t_A, 1 - f_A)$ where t_A and f_A are Fuzzy subsets of U satisfying the Condition $t_A(u) \le 1 - f_A(u)$ for all $u \in U$. R.Biswas[7] initiated the study of Vague algebra by introducing the concepts of Vague groups, Vague normal groups. H.Khan, M.Ahmad and R.Biswas[12] introduced the notion of Vague relations and studied some properties of them. N.Ramakrishna[13,14] continued this study by studying Vague Cosets, Vague Products and several properties related to them. In 2008, Y.B.Jun and C.H.Park[11] introduced the notion of Vague Ideals in Substraction algebra. T.Eswarlal[8] had introduced the notion of Vague ideals and normal Vague ideals in Semirings in 2008. In 2005 K.Hur et.al[10] studied in detail the notion of intuitionistic Fuzzy Ideals of a ring and established their characterization in terms of level subsets. Moreover they studied the Lattice structure of intuitionistic Fuzzy Ideals of a ring and Ideals in a Lattice. Their characterizations in terms of level subsets are provided and their homomorphic images under various conditions are studied.

2. PRELIMINARIES

Definition 2.1: [8]

A Vague set A in the universe of discourse S is a Pair (t_A, f_A) where $t_A : S \to [0,1]$ and $f_A : S \to [0,1]$ are mappings (called truth membership function and false membership function respectively) where $t_A(x)$ is a lower bound of the grade of membership of x derived from the evidence for x and $f_A(x)$ is a lower bound on the negation of x derived from the evidence against x and $t_A(x) + f_A(x) \le 1 \forall x \in S$.

Definition 2.2: [8]

The interval $[t_A(x), 1- f_A(x)]$ is called the Vague value of x in A, and it is denoted by $V_A(x)$. That is $V_A(x) = [t_A(x), 1- f_A(x)]$.

Definition 2.3: [8]

A Vague set A of S is said to be contained in another Vague set B of S. That is A \subseteq B, if and only if $V_A(x) \leq V_B(x)$. That is $t_A(x) \leq t_B(x)$ and $1 - f_A(x) \leq 1 - f_B(x) \forall x \in S$.

Definition 2.4: [8]

Two Vague sets A and B of S are equal (i.e) A = B, if and only if $A \subseteq B$ and $B \subseteq A$.

(i.e) $V_A(x) \le V_B(x)$ and $V_B(x) \le V_A(x) \forall x \in S$, which implies $t_A(x) = t_B(x)$ and $1 - f_A(x) = 1 - f_B(x)$.

Definition 2.5 :[8]

The Union of two vague sets A and B of S with respective truth membership and false membership functions t_A , f_A and t_B , f_B is a Vague set C of S, written as $C = A \cup B$, whose truth membership and false membership functions are related to those of A and B by $t_C = \max\{t_A, t_B\}$ and $1 - f_C = \max\{1 - f_A, 1 - f_B\}=1-\min\{f_A, f_B\}$.

Definition 2.6: [8]

The Intersection of two vague sets A and B of S with respective truth membership and false membership functions t_A , f_A and t_B , f_B is a Vague set C of S, written as $C = A \cap B$, whose truth membership and false membership functions are related to those of A and B by $t_C = \min\{t_A, t_B\}$ and $1 - f_C = \min\{1 - f_A, 1 - f_B\}=1-\max\{f_A, f_B\}$.

Definition 2.7: [8]

A Vague set A of S with $t_A(x) = 1$ and $f_A(x) = 0 \forall x \in S$, is called the unit vague set of S.

Definition 2.8: [8]

A Vague set A of S with $t_A(x) = 0$ and $f_A(x) = 1 \forall x \in S$, is called the zero vague set of S.

Definition 2.9: [8]

Let A be a Vague set of the universe S with truth membership function t_A and false membership function f_A , for $\alpha, \beta \in [0,1]$ with $\alpha \leq \beta$, the (α, β) cut or Vague cut of the Vague set A is a crisp subset $A_{(\alpha,\beta)}$ of S given by $A_{(\alpha,\beta)} = \{x \in S: V_A(x) \geq (\alpha, \beta)\}, (i.e) A_{(\alpha,\beta)} = \{x \in S: t_A(x) \geq \alpha \text{ and } 1 - f_A(x) \geq \beta \}$

Definition 2.10: [8]

The α -cut, A_{α} of the Vague set A is the (α, α) cut of A and hence it is given by $A_{\alpha} = \{x \in S : t_A(x) \ge \alpha\}$.

Definition 2.11: [10]

Let (X,\leq) be a Poset, if $\forall a,b\in S \Rightarrow a\lor b$, $a\land b \in X$. Then (X,\leq) or (X,\lor,\land) is called a Lattice where $a\lor b = \lor \{a,b\} = \sup\{a,b\}$, $a\land b = \land \{a,b\} = \inf\{a,b\}$.

Definition 2.12: [10]

Let (X, \lor, \land) be a Lattice, if it satisfied following distributivity Laws, then it is called a distributive Lattice i) $a\lor(b\land c) = (a\lor b)\land(a\lor c), \forall a, b, c \in L$ ii) $a\land(b\lor c) = (a\land b)\lor(a\land c), \forall a, b, c \in L$

Definition 2.13: [10]

A Fuzzy subset μ of L is called a Fuzzy Sublattice of L if $\min\{\mu(x), \mu(y)\}$

i) $\mu(x \lor y) \ge$

ii) $\mu(x \land y) \ge \min\{\mu(x), \mu(y)\} \quad \forall x, y \in L$

Definition 2.14: [10]

A Fuzzy subset μ of L is called a Fuzzy Sublattice of L if i) $\mu(x \lor y) \ge \min\{\mu(x), \mu(y)\}$

ii) $\mu(x \land y) \ge \max\{\mu(x), \mu(y)\} \quad \forall x, y \in L$

3. NEW OPERATIONS ON VAGUE IDEALS OVER LATTICES

Definition 3.1:

Let $A, B \in VS(L)$. Then we define on VS(L) the following Operations.

- i) $A+B = \{\langle z, V_{A+B}(z) \rangle | z \in L\}, \text{ Where } V_{A+B}(z) = \sup_{z=x,y} \{\min\{V_A(x), V_B(y)\}\}$
- ii) AB = { $\langle z, V_{AB}(z) \rangle / z \in L$ }, Where $V_{AB}(z) = \sum_{z=x \land y}^{Sup} \{\min\{V_A(x), V_B(y)\}\}$
- iii) $A \oplus B = \{ \langle z, V_{A \oplus B}(z) \rangle / z \in L \}, \text{ Where } V_{A \oplus B}(z) = \sum_{z \leq x \lor y}^{Sup} \{ \min\{ V_A(x), V_B(y) \} \}$
- iv) AoB = {<z, $V_{AoB}(z) > /z \in L$ }, Where $V_{AoB}(z) = \frac{Sup}{z \ge x \lor y} \{\min\{V_A(x), V_B(y)\}\}$
- v) $A \bullet B = \{ \langle z, V_{A \bullet B}(z) \rangle / z \in L \}, \text{ Where } V_{A \bullet B}(z) = \sum_{z=V_{i=1}^{n} x_i / y_i}^{Sup} \{ \min\{ V_A(x_i), V_B(y_i) \} \}$

Lemma 3.2:

Let A, B, C \in VS(L). Then the following conditions hold.

- i) $AB = BA, A+B = B+A, A \bullet B = B \bullet A$
- ii) AB⊆A•B⊆AoB
- iii) $C(A+B) \subseteq CA+CB$
- iv) (C+B)A ⊆CA+BA
- $v) \qquad (A \cap B)C \subseteq AC \cap BC$
- vi) $A \subseteq B \Rightarrow AC \subseteq BC \text{ and } A \bullet C \subseteq B \bullet C$
- vii) $A+B \subseteq A \oplus B$ and $AB \subseteq A \circ B$, equality holds if L is distributive.
- viii) $A \subseteq A + A, A \subseteq AA, A \subseteq A \oplus A, A \subseteq AoA and A \subseteq A \bullet A.$

Proof: Follows from definitions.

Lemma 3.3:

Let $A, B \in VS(L)$ with $\sup_{x \in L} t_A(x) = t_1$, $\sup_{x \in L} t_B(x) = t_2$ and $\sup_{x \in L} 1 - f_A(x) = k_1$, $\sup_{x \in L} 1 - f_B(x) = k_2$. Then $A \subseteq A \oplus B \Rightarrow t_1 \le t_2$, $k_1 \le k_2$.

Proof:

Suppose $t_1 > t_2$ and $k_1 > k_2$. Then $\sup_{x \in L} t_B(x) < \sup_{x \in L} t_A(x) \Rightarrow \sup_{x \in L} t_B(x) < \sup_{x \in L} t_A(z_0)$ for some $z_0 \in L$. So that $t_{A \oplus B}(z_0) = \sup_{x \in L} \sup_{x \in V} \min\{t_A(x), t_B(y)\} \le \sup_{z_0 \leq x \lor y} t_B(y) \le \sup_{y \in L} t_B(y) < t_A(z_0)$. This contradicts $A \subseteq A \oplus B$. Therefore $t_1 \leq t_2$. And $\sup_{x \in L} (1 - f_B(x)) < \sup_{x \in L} (1 - f_A(x)) \Rightarrow \sup_{x \in L} (1 - f_B(x)) < \sup_{x \in L} (1 - f_B(y)) \le \sup_{x \in V} (1 - f_B(y)) \le \sup_{x \leq x \lor y} (1 - f_B(y)) \le \sup_{y \in L} (1 - f_B(y)) \le (1 - f_B(y)) \le (1 - f_B(y))$. This contradicts $A \subseteq A \oplus B$. Therefore $k_1 \leq k_2$.

Lemma 3.4:

Let $A, B \in VS(L)$ with $\sup_{x \in L} t_A(x) = t_1$, $\sup_{x \in L} t_B(x) = t_2$ and $\sup_{x \in L} 1 - f_A(x) = k_1$, $\sup_{x \in L} 1 - f_B(x) = k_2$. Then $A \subseteq A \oplus B$ and $B \subseteq A \oplus B \Rightarrow t_1 = t_2$, $k_1 = k_2$.

Proof: Follows from 3.3

Lemma 3.5:

Let A,B \in VS(L) with $\sup_{x \in L} t_A(x) = \sup_{x \in L} t_B(x) = t$ and $\sup_{x \in L} 1 - f_A(x) = \sup_{x \in L} 1 - f_B(x) = k$. Then

- i) $A,B \subseteq A \oplus B$, if A and B both attain their Sup for t and Sup for 1-f.
- ii) $A,B \subseteq A \oplus B$, if A and B both do not attain their Sup for t and Sup for 1-f.

Proof:

- i) Suppose that A and B both attain their Sup for t and Sup for 1-f. Let $\sum_{x \in L}^{sup} t_A(x) = t_A(x_0)$ and $\sum_{x \in L}^{sup} t_B(x) = t_B(y_0)$ for some $x_0, y_0 \in L$ and $\sum_{x \in L}^{sup} 1 - f_A(x) = 1 - f_A(l_0)$ and $\sum_{x \in L}^{sup} 1 - f_B(x) = 1 - f_B(m_0)$ for some $l_0, m_0 \in L$. Then by our assumption $t_A(x_0) = t_B(y_0)$ and $1 - f_A(l_0) = 1 - f_B(m_0)$. For $z \in L$, we have $t_{A \oplus B}(z) = \sum_{z \leq x \lor y}^{sup} \{\min\{t_A(x), t_B(y) \ge \min\{t_A(z), t_B(y_0)\} \text{ as } z \leq z \lor y_0 = t_A(z), \text{ since } t_A(z), \leq \sum_{x \in L}^{sup} t_A(x) = t_A(x_0) = t_B(y_0) \text{ and } 1 - f_A \oplus B(z) = \sum_{z \leq x \lor y}^{sup} \{\min\{1 - f_A(x), 1 - f_B(y) \ge \min\{1 - f_A(z), 1 - f_B(m_0)\} \text{ as } z \leq z \lor m_0 = 1 - f_A(z),$ since $1 - f_A(z) \le \sum_{x \in L}^{sup} 1 - f_A(x) = 1 - f_B(m_0)$. Hence $A \subseteq A \oplus B$. Similarly we can prove that $B \subseteq A \oplus B$. ii) Suppose that A and B both do not attain their Sup for t and Sup for 1-f. Since A do not attain its Sup for t
- and 1-f, we have $t_A(z) < t \forall z \in L$ and $1 f_A(z) < k \forall z \in L$. Then there exist $y_0 \in L$ Such that $t_B(y_0) > t_A(z)$ and there exist $l_0 \in L$ such that $1 - f_B(l_0) > 1 - f_A(z)$ But $z \leq z \lor y_0$ and hence $t_{A \oplus B}(z) = \sum_{\substack{sup\\z \leq x \lor y}} \{\min\{t_A(x), t_B(y) \ge \min\{t_A(z), t_B(y_0)\} = t_A(z) \text{ and } z \leq z \lor l_0$, we have $1 - f_{A \oplus B}(z) = \sum_{\substack{sup\\z \leq x \lor y}} \{\min\{1 - f_A(x), 1 - f_B(y) \ge \min\{1 - f_A(z), 1 - f_B(l_0)\} = 1 - f_A(z)$. So that $A \subseteq A \oplus B$. Similarly, we can prove that $B \subseteq A \oplus B$.

Proposition 3.6:

Let $A \in VS(L)$. Then A is a VL of L if and only if A+A =A and AA=A.

Proof:

We have A₂A+A and A₂AA. Let A is a VL of L. Then $\forall x, y \in L$ such that $z=x \lor y$, we have $V_A(z) = V_A(x \lor y) \ge \min\{V_A(x), V_A(y)\}$. Therefore $V_A(z) \ge \sup_{z=x \lor y} \{\min\{V_A(x), V_A(y)\}\} = V_{A \oplus A}(z)$. Hence A₂A+A. Thus A=A+A. Now, $\forall x, y \in L$ such that $z=x \land y$, we have $V_A(z) = V_A(x \land y) \ge \min\{V_A(x), V_A(y)\}$. Therefore $V_A(z) \ge \sup_{z=x \land y} \{\min\{V_A(x), V_A(y)\}\} = V_{AA}(z)$. Thus A₂AA. Hence A=AA. Conversely, suppose that A=A+A and A=AA. Then $\forall x, y \in L$ we have $V_A(x \lor y) = V_{A+A}(x \lor y) = \sup_{x \lor y=x_1 \lor y_1} \{\min\{V_A(x_1), V_A(y_1)\}\} \ge \min\{V_A(x), V_A(y)\}$ and $V_A(x \land y) = V_{AA}(x \land y) = \sup_{x \land y=x_1 \land y_1} \{\min\{V_A(x_1), V_A(y_1)\}\} \ge \min\{V_A(x_1), V_A(y)\}$. Hence A is a VL of L.

Proposition 3.7:

Let $A \in VS(L)$. Then $A \in VI(L)$ if and only if $A \oplus A = A$.

Proof:

Suppose A \in VI(L). Let $z \in L$, choose $x, y \in L$ such that $z \leq x \lor y$. Then $V_A(z) \geq V_A(x \lor y) \geq \min\{V_A(x), V_A(y)\}$, since A VI of L. So that $V_A(z) \geq \sum_{z \leq x \lor y}^{sup} \{\min\{V_A(x), V_A(y)\}\} = V_{A \oplus A}(z)$. Hence A \supseteq A \oplus A. Clearly A \subseteq A \oplus A. Thus A = A \oplus A. Conversely suppose that A = A \oplus A. Let $x, y \in L$. Then $V_A(x \lor y) = V_{A \oplus A}(x \lor y) = \sum_{x \lor y = x_1 \lor y_1}^{sup} \{\min\{V_A(x_1), V_A(y_1)\}\} \geq \min\{V_A(x), V_A(y)\}$ and $V_A(x \land y) = V_{A \oplus A}(x \land y) = \sum_{x \land y = x_1 \land y_1}^{sup} \{\min\{V_A(x_1), V_A(y_1)\}\} \geq \min\{V_A(x_1), V_A(y_1)\}\} \geq \min\{V_A(x_1), V_A(y_1)\}\}$. Hence A is a VL of L. Now let $z_1, z_2 \in L$ such that $z_1 \leq z_2$. Then $V_A(z_2) = V_{A \oplus A}(z_2) = \sum_{z_2 \leq x_2 \lor y_2}^{sup} \{\min\{V_A(x_2), V_A(y_2)\}\}, x_2, y_2 \in L \leq \sum_{z_1 \leq x_1 \lor y_1}^{sup} \{\min\{V_A(x_1), V_A(y_1)\}\}\}$, as $z_1 \leq z_2 = V_A(z_1)$. Thus $V_A(z_2) \leq V_A(z_1)$. Hence A is a VI of L.

Theorem 3.8:

Let A, $B \in VI(L)$. Then $A \oplus B \in VI(L)$.

Proof:

Suppose that for some x, $y \in L t_{A \oplus B}(x \lor y) < \min\{t_{A \oplus B}(x), t_{A \oplus B}(y)\}$. Let $t_{A \oplus B}(x \lor y) = m_0$. Then $m_0 < t_{A \oplus B}(x)$ and $m_0 < t_{A \oplus B}(y)$. This implies there exist a, $b \in L$ such that $x \le a \lor b$, $m_0 < \min\{t_A(a), t_B(b)\}$ and there exist c, $d \in L$ such that $y \le c \lor d$, $m_0 < \min\{t_A(c), t_B(d)\}$. So that $m_0 < t_A(a)$, $m_0 < t_B(b)$, $m_0 < t_A(c)$ and $m_0 < t_B(d)$. Hence $m_0 < \min\{t_A(a), t_A(c)\} \le t_A(a \lor c)$, since A a VI of L. Also $m_0 < \min\{t_B(b), t_B(d)\} \le t_B(b \lor d)$, since B a VI of L. Thus $t_{A \oplus B}(x \lor y) \ge \sup_{x \lor y \le p \lor q} \{\min\{t_A(p), t_B(q)\}\}$, $p,q \in L \ge \min\{t_A(a \lor c), t_B(b \lor d)\} > t_0$. This contradicts $t_{A \oplus B}(x \lor y) = t_0$. Hence $t_{A \oplus B}(x \lor y) \ge \min\{t_{A \oplus B}(x), t_{A \oplus B}(y)\}$, $\forall x, y \in L$(1). Similarly we can prove that $1 - f_{A \oplus B}(x \lor y) \ge \min\{1 - f_{A \oplus B}(x)\}$ and $\max\{t_{A \oplus B}(x), t_{A \oplus B}(y)\} = t_{A \oplus B}(x)$, (say). Then $k_0 < t_{A \oplus B}(x)$. This implies there exist a, $b \in L$ such that $x \le a \lor b$ and $\min\{t_A(a), t_B(b)\} > k_0$. So that $t_{A \oplus B}(x)$, (say). Then $k_0 < t_{A \oplus B}(x)$, $t_{A \oplus B}(y)$, $p,q \in L \ge \min\{t_A(a), t_B(b)\} > k_0$. So that $t_{A \oplus B}(x \land y) \ge \max_{x \land y \le p \land q} \{\min\{t_A(p), t_B(q)\}\}$, $p,q \in L \ge \min\{t_A(a), t_B(b)\} > k_0$. This contradicts $k_0 = t_{A \oplus B}(x \land y)$. Consequently $t_{A \oplus B}(x \land y) \ge \max\{t_{A \oplus B}(x), t_{A \oplus B}(y)\}$, for some $x, y \in L$(3). Similarly we can prove $1 - f_{A \oplus B}(x \land y) \ge \max\{1 - f_{A \oplus B}(x), 1 - f_{A \oplus B}(y)\}$, for some $x, y \in L$(4). Thus from $(1), (2), (3), (4) \land \Theta \in \forall I(L)$.

Theorem 3.9:

Let $A,B \in VI(L)$ with $\sup_{x \in L} V_A(x) = \sup_{x \in L} V_B(x)$ and both A, B attain the sup of t and 1-f.[or both A,B do not attain the sup of t and 1-f]. Then A \oplus B is a VI generated by A and B.

Proof:

By Lemma 3.5 and Theorem 3.10, $A \oplus B$ is a VI containing both A and B. Let $C \in VI(L)$ such that $A \subseteq C$ and $B \subseteq C$. Then for $z \in L$, we have $V_{A \oplus B}(z) = \sup_{z \le x \lor y} \{\min\{V_A(x), V_B(y)\}\} \le \sup_{z \le x \lor y} \{\min\{V_C(x), V_C(y)\}\} = t_{C \oplus C}(z) = t_C(z)$, by Proposition 3.9 Hence $A \oplus B \subseteq C$. Thus $A \oplus B$ is the least VI containing A and B. We denote the set of all VI's of L that attain both sup(t) = m and sup(1-f) = k by $VI_{[m,k]}(L)$ and the set of all VI's of L that do not attain both the sup(t) = m and sup(1f) = k by $VI_{(m,k)}(L)$.

Theorem 3.10:

The set $VI_{(m,k)}(L)$ $[VI_{[m,k]}(L)]$ forms a Lattice under the ordering \subseteq with join and meet defined by $A \lor B = A \oplus B$ and $A \land B = A \cap B$.

Proof:

We know that $A \lor B = A \oplus B$. Now we show that $A \oplus B \in VI_{(m,k)}(L)$. Let $z \in L$. Then $t_{A \oplus B}(z) = \sup_{z \leq x \lor y} \{\min\{t_A(x), t_B(y)\}\} \leq \min\{\sup_{x \in L} t_A(x), \sup_{x \in L} t_B(y)\} = I$. We show that 'I' is the least upper bound of $t_{A \oplus B}$. Let $\varepsilon > 0$, since I is the supremum of t_A and t_B , there exist $x_1, y_1 \in L$ such that $t_A(x_1) > t$ - ε and $t_B(y_1) > t$ - ε . So that for $z_1 = x_1 \lor y_1$, we have $t_{A \oplus B}(z_1) = \sup_{z_1 \leq x \lor y} \{\min\{t_A(x), t_B(y)\}\} \geq \min\{t_A(x_1), t_B(y_1)\} > I$ - ε . Hence I is the least upper bound of $t_{A \oplus B}$. Similarly, we can prove m is the least upper bound of $1 - f_{A \oplus B}$. Thus $A \oplus B \in VI_{(m,k)}(L)$. Clearly, $A \cap B \in VI_{(m,k)}(L)$. Thus $(VI_{(m,k)}(L), \subseteq, \oplus, \cap)$ forms a Lattice.

Theorem 3.11:

If L is distributive then the lattice $VI_{(m,k)}(L)$ [$VI_{[m,k]}(L)$] is distributive.

Proof:

Let A,B,C $\in VI_{(m,k)}(L)$. Then by distributive inequality, which is satisfied by every Lattice, we have $A \land (B \lor C) \supseteq (A \land B) \lor (A \land C)$. The proof of the theorem will be complete if we show that $A \land (B \lor C) \supseteq (A \land B) \lor (A \land C)$. If possible, suppose $A \land (B \lor C) \not\subset (A \land B) \lor (A \land C)$ then there exist $z \in L$ such that $V_{A \land (B \lor C)}(z) > V_{(A \land B) \lor (A \land C)}(z)$. Since L is distributive $A \oplus B = A + B$, so $A \lor B = A + B$. So that $V_{A \cap (B + C)}(z) > V_{(A \cap B) + (A \cap C)}(z)$. Now, $V_{A \cap (B + C)}(z) > V_{(A \cap B) + (A \cap C)}(z)$ implies $\min\{V_A(z), V_{B+C}(z)\} >_{z=x \lor y}^{sup} \{\min\{V_{A \cap B}(x), V_{A \cap C}(y)\}\}$. This implies $\min\{V_A(z), z=x \lor y\} \{\min\{V_B(x), V_C(y)\}\}$ $>_{z=x \lor y} \{\min\{V_{A \cap B}(x), V_{A \cap C}(y)\}\}$. Then there exist $x_0, y_0 \in L$ such that $z = x_0 \lor y_0$ and $V_A(z)$, $\min\{V_B(x_0), V_C(y_0)\} >$ $z=x \lor y} \{\min\{V_{A \cap B}(x), V_{A \cap C}(y)\}\} \ge \min\{V_{A \cap B}(x_0), V_{A \cap C}(y_0)\} = \min\{V_A(x_0), V_B(x_0), V_A(y_0), V_C(y_0)\}$. Hence min $\{V_A(x_0), V_B(x_0), V_A(y_0), V_C(y_0)\} = V_A(x_0)$ or $V_A(y_0)$. So that $V_A(z) > V_A(x_0)$ or $V_A(y_0)$. But since $A \in VI_{(m,k)}(L)$ and $x_0, y_0 \le z$ we have $V_A(x_0) \ge V_A(z)$ and $V_A(y_0) \ge V_A(z)$. Thus, $V_A(z) > V_A(x_0)$ or $V_A(y_0)$ is not true. So our assumption is wrong, consequently $A \land (B \lor C) \subseteq (A \land B) \lor (A \land C)$. Hence $VI_{(m,k)}(L)$ is a distributive Lattice.

4. **REFERENCES**

[1] D.K. Basnet and N. K. Sarma, A note on intuitionistic fuzzy equivalence relation. *International Mathematical Forum.*5, 2010,no 67,3301-3307.

- [2] S.K. Bhakat and P. Das, Fuzzy subrings and Ideals redefined, Fuzzy Sets and Systems, 81, (1996), 383-393.
- [3] R. Biswas, Institutionstic fuzzy subgroups, Mathematical Forum X (1996) 39-44.
- [4] G. Brikhoff, Lattice theory, Published by American Mathematical theory. Providence Rhode Island. (1967).
- [5] H. Bustince and P. Burillo, Intuitionistic fuzzy relations (Part I) Mathware and soft computing 2 (1995) 5-38.
- [6] H. Bustince and P. Burillo, Intuitionistic fuzzy relations (Part II) Effect of Atanassov's operators on the properties of the intuitionistic fuzzy relations. *Mathware and soft computing* 2 (1995) 117-148.
- [7] R. Biswas; Vague groups, International Journal of Computational Cognition, 4(2), 2006.
- [8] T. Eswarlal; Vague ideals and normal vague ideals in semirings, International Journal of Computational Cognition, 6(3):6065, 2008.
- [9] W. L. Gau and D. J. Buehrer; Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23:610614, 1993.
- [10] K. Hur, Y. S Ahn and D S Kim, The lattice of Intuitionistic fuzzy Ideals of a ring, Journal of Appl. Math & Computing Vol 18 (2005) No.12 pp 465 -486.
- [11] Y. B. Jun and C. H. Park; Vague ideals in substraction algebra, International Mathematical Forum., 59(2):29192926, 2007.
- [12] H. Khan, M. Ahmad, and R. Biswas; Vague relations, International Journal of Computational Cognition, 5(1):3135, 2007.
- [13] N. Ramakrishna; On a product of vague groups International Journal of Computational Cognition. (Communicated).
- [14] N. Ramakrishna; Vague normal groups, International Journal of Computational Cognition, 6(2):1013, 2008.
- [15] Saha, N.K., (1987), On Γ-semigroup II, Bull. Cal. Math. Soc., 79, pp.331-335.
- [16] Sardar, S.K., Davvaz, B., Majumder, S.K., (2010), A study on fuzzy interior ideals of Γ-semigroups, Computers and Mathematics with Applications, 60, pp.90-94.
- [17] Sardar, S.K., Majumder, S.K., Mandal, D., (2009), A note on characterization of prime ideals of Γ-semigroups in terms of fuzzy subsets, Int. J. of Contemp. Math. Sciences., 4(30), pp.1465-1472.
- [18] Sen, M.K., Saha, N.K., (1986), On Γ-semigroup I, Bull. Cal. Math. Soc., 78, pp.180-186.
- [19] Seth, A., (1992), Γ-group congruences on regular Γ-semigroups, Internat. J. Math. Math. Sci., 15, pp.103-106.
- [20] Torkzadeh L., M.M. Zahedi, Intuitionistic fuzzy commutative hyper k ideals. J. Appl. Math. & Computing, Vol. 21 (2006), No. 1, 451-467.
- [21] W. Z WU and W. X Zhang, Constructive and Axiomatic approaches of fuzzy approximation operators *.Information Sciences* 159 (2004) 233-254.
- [22] L.A Zadeh, Fuzzy Sets. Information and control,8(1965)338-353.
- [23] L.A Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I. *Information Sciences*. 8 (1975)199-249.