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1. INTRODUCTION 

                    In 1993 W.L.Gau and D.J.Buehrer[9] Proposed the theory of Vague sets as an improvement of theory of 

Fuzzy sets in approximating the real life situation.  Vague sets are higher order Fuzzy sets.  A Vague set A in the 

universe of discourse U is a Pair (𝑡𝐴 , 1 − 𝑓𝐴) where 𝑡𝐴 and 𝑓𝐴 are Fuzzy subsets of U satisfying the Condition 𝑡𝐴(𝑢) ≤ 

1 − 𝑓𝐴 𝑢  for all 𝑢 ∈U.  R.Biswas[7] initiated the study of Vague algebra by introducing the concepts of Vague groups, 

Vague normal groups.  H.Khan , M.Ahmad and R.Biswas[12] introduced the notion of Vague relations and studied some 

properties of them.  N.Ramakrishna[13,14] continued this study by studying Vague Cosets, Vague Products and several 

properties related to them.  In 2008, Y.B.Jun and C.H.Park[11]  introduced the notion of Vague Ideals in Substraction 

algebra.  T.Eswarlal[8] had introduced the notion of Vague ideals and normal Vague ideals in Semirings in 2008.  In 

2005 K.Hur et.al[10] studied in detail the notion of  intuitionistic Fuzzy Ideals of a ring and established their 

characterization in terms of level subsets.  Moreover they studied the Lattice structure of intuitionistic Fuzzy Ideals of a 

ring and their Modularity.  In this Paper we introduced the concept of Vague sublattices and Ideals in a Lattice.  Their 

characterizations in terms of  level subsets are provided and their homomorphic images under various conditions are 

studied. 

2. PRELIMINARIES 

Definition 2.1: [8] 

                    A Vague set A in the universe of discourse S is a Pair (𝑡𝐴, 𝑓𝐴) where 𝑡𝐴 : S → [0,1] and 𝑓𝐴 : S → [0,1] are 

mappings (called truth membership function and false membership function respectively) where 𝑡𝐴(x) is a lower bound of 

the grade of membership of x derived from the evidence for x and 𝑓𝐴(x) is a lower bound on the negation of x derived 

from the evidence against x and  𝑡𝐴(x) + 𝑓𝐴(x) ≤ 1 ∀x∈ S. 
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Definition 2.2: [8] 

                   The interval [𝑡𝐴(x),1- 𝑓𝐴(x)] is called the Vague value of x in A, and it is denoted by 𝑉𝐴(x).  That is 𝑉𝐴(x) = 

[𝑡𝐴(x),1- 𝑓𝐴(x)]. 

Definition 2.3: [8] 

               A Vague set A of S is said to be contained in another Vague set B of S.  That is A  B, if and only if 𝑉𝐴(x) 

≤  𝑉𝐵(x). That is  𝑡𝐴(x) 𝑡𝐵(x) and 1 − 𝑓𝐴(x) 1 − 𝑓𝐵(x) ∀x ∈  S. 

Definition 2.4: [8] 

                Two Vague sets A and B of  S are equal (i.e) A = B, if and only if AB and BA. 

(i.e) 𝑉𝐴(x) 𝑉𝐵(x) and  𝑉𝐵(x) 𝑉𝐴(x) ∀x∈ S, which implies 𝑡𝐴(x)  𝑡𝐵(x) and 1 − 𝑓𝐴(x)  1 − 𝑓𝐵(x). 

Definition 2.5 :[8] 

                  The Union of two vague sets A and B of S with respective truth membership and false membership functions 

𝑡𝐴, 𝑓𝐴 and 𝑡𝐵, 𝑓𝐵  is a Vague set C of S, written as C = A  B, whose truth membership and false membership functions 

are related to those of A and B by 𝑡𝐶  = max{𝑡𝐴, 𝑡𝐵} and 1 − 𝑓𝐶  = max {1 − 𝑓𝐴  , 1 − 𝑓𝐵 }=1-min{𝑓𝐴, 𝑓𝐵}. 

Definition 2.6: [8] 

              The Intersection  of two vague sets A and B of S with respective truth membership and false membership 

functions 𝑡𝐴, 𝑓𝐴  and 𝑡𝐵, 𝑓𝐵  is a Vague set C of S, written as C = A  B, whose truth membership and false membership 

functions are related to those of A and B by 𝑡𝐶  = min{𝑡𝐴, 𝑡𝐵} and 1 − 𝑓𝐶  = min {1 − 𝑓𝐴 , 1 − 𝑓𝐵  }=1-max{𝑓𝐴, 𝑓𝐵}. 

Definition 2.7: [8] 

              A Vague set A of S with 𝑡𝐴(x) = 1 and 𝑓𝐴(x) = 0 ∀x∈ S, is called the unit vague set of S. 

Definition 2.8: [8] 

             A Vague set A of S with 𝑡𝐴(x) = 0 and 𝑓𝐴(x) = 1 ∀x∈ S, is called the zero vague set of S.  

Definition 2.9: [8] 

            Let A be a Vague set of the universe S with truth membership function 𝑡𝐴 and false membership function 𝑓𝐴, for 

,  [0,1] with , the (, ) cut or Vague cut of the Vague set A is a crisp subset 𝐴(𝛼 ,𝛽) of S given by 𝐴(𝛼 ,𝛽)  = 

{xS: 𝑉𝐴(x)≥ (, )},(i.e) 𝐴(𝛼,𝛽)  = {xS: 𝑡𝐴(x)≥ and 1-𝑓𝐴(x)≥  } 

Definition 2.10: [8] 

          The -cut, 𝐴𝛼  of the Vague set A is the (,) cut of A and hence it is given by 𝐴𝛼  = { xS : 𝑡𝐴(x) ≥ }. 

Definition 2.11: [10] 

                 Let (X,) be a Poset, if ∀ a,bS  ab,  ab  X.  Then (X,) or (X,,) is called a Lattice where ab = 

{a,b}=sup{a,b} , ab = {a,b} = inf{a,b}.      
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Definition 2.12: [10] 

                    Let  (X,,) be a Lattice, if it satisfied following distributivity Laws, then it is called a distributive Lattice  i)  

a(bc) = (ab)(ac)  ,∀a,b,c L      ii)  a(bc) = (ab)(ac) , ∀a,b,c L 

Definition 2.13: [10] 

                   A Fuzzy subset  of L is called a Fuzzy Sublattice of L if                                                   i)  𝑥𝑦  ≥ 

min{𝜇 𝑥 ,(𝑦)} 

ii)  𝑥𝑦  ≥ min{𝜇 𝑥 ,(𝑦)}   ∀ x,y L 

Definition 2.14: [10] 

     A Fuzzy subset  of L is called a Fuzzy Sublattice of L if                                                                                                                

i)  𝑥𝑦  ≥ min{𝜇 𝑥 ,(𝑦)} 

ii)  𝑥𝑦  ≥ max{𝜇 𝑥 ,(𝑦)}   ∀ x,y L 

3. NEW OPERATIONS ON  VAGUE IDEALS OVER LATTICES 

Definition 3.1: 

Let A,B  VS(L).  Then we define on VS(L) the following Operations. 

i) A+B = {<z, 𝑉𝐴+𝐵(z)>/zL}, Where  𝑉𝐴+𝐵(z) = {𝑧=𝑥𝑦
𝑆𝑢𝑝

min{  𝑉𝐴(x), 𝑉𝐵(y)} }  

ii) AB =   {<z, 𝑉𝐴𝐵(z)>/zL}, Where  𝑉𝐴𝐵(z) = {𝑧=𝑥𝑦
𝑆𝑢𝑝

min{  𝑉𝐴(x), 𝑉𝐵(y)} } 

iii) AB =  {<z, 𝑉𝐴𝐵(z)>/zL}, Where  𝑉𝐴 𝐵(z) = {𝑧 𝑥𝑦
𝑆𝑢𝑝

min{  𝑉𝐴(x), 𝑉𝐵(y)} } 

iv) AoB =  {<z, 𝑉𝐴𝑜𝐵 (z)>/zL}, Where  𝑉𝐴𝑜𝐵 (z) = {𝑧 𝑥𝑦
𝑆𝑢𝑝

min{  𝑉𝐴(x), 𝑉𝐵(y)} } 

v) AB =  {<z, 𝑉𝐴𝐵(z)>/zL}, Where  𝑉𝐴𝐵(z) = {
𝑧= 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

𝑆𝑢𝑝
min{  𝑉𝐴(xi), 𝑉𝐵(yi)} } 

Lemma 3.2: 

                        Let A, B, C VS(L).  Then the following conditions hold. 

i) AB = BA, A+B = B+A, AB = BA 

ii) ABABAoB 

iii) C(A+B) CA+CB 

iv) (C+B)A CA+BA 

v) (A B)CACBC 

vi) AB ACBC  and  ACBC 

vii) A+BAB and ABAoB, equality holds if L is distributive. 

viii) AA+A, AAA, AAA, AAoA and AAA.  

Proof:  Follows from definitions. 
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Lemma 3.3: 

        Let A,BVS(L) with  𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑡1 ,  𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑡2 and  1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑘1 ,  1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑘2  .  Then  AAB  

𝑡1 𝑡2 , 𝑘1 𝑘2  . 

Proof: 

      Suppose 𝑡1 𝑡2 and 𝑘1 𝑘2.  Then  𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x)   𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x)   𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x)   𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(𝑧0) for some  𝑧0L.  So that 𝑡𝐴 𝐵(𝑧0 )= 

{ 𝑧0≤𝑥𝑦
𝑠𝑢𝑝

min{𝑡𝐴(x), 𝑡𝐵(y)}   𝑧0≤𝑥𝑦
𝑠𝑢𝑝

𝑡𝐵(y)  𝑡𝐵𝑦𝐿
𝑠𝑢𝑝

(y) 𝑡𝐴(𝑧0).  This contradicts A AB.   Therefore 𝑡1 𝑡2.  And   

(1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x))  (1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x))  (1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x))   (1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(𝑤0)) for some  𝑤0L. Then   (1 − 𝑓𝐴 𝐵(𝑤0  ))= 

{ 𝑤0≤𝑥𝑦
𝑠𝑢𝑝

min{1 − 𝑓𝐴(x)), 1 − 𝑓𝐵(y)}   𝑤≤𝑥𝑦
𝑠𝑢𝑝

(1 − 𝑓𝐵(y))  (1 − 𝑓𝐵𝑦𝐿
𝑠𝑢𝑝

(y))( 1 − 𝑓𝐴(𝑤0)).  This contradicts A AB.  

Therefore  𝑘1 𝑘2. 

Lemma 3.4: 

      Let A,BVS(L) with   𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑡1 ,  𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑡2 and  1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑘1 ,  1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑘2  .  Then  AAB and 

BAB   𝑡1= 𝑡2 , 𝑘1= 𝑘2   . 

Proof: Follows from 3.3 

Lemma 3.5: 

   Let A,BVS(L) with   𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =   𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = t and  1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =   1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x) = 𝑘  .  Then  

i)  A,B AB , if A and B both attain their Sup for t and Sup for 1-f. 

ii) A,B AB , if A and B both  do not attain their Sup for t and Sup for 1-f. 

Proof: 

i) Suppose that A and B both attain their Sup for t and Sup for 1-f.  Let  𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =𝑡𝐴(𝑥0) and   𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(x) =𝑡𝐵(𝑦0) 

for some 𝑥0, 𝑦0L and  1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =1 − 𝑓𝐴(𝑙0) and   1 − 𝑓𝐵𝑥𝐿
𝑠𝑢𝑝

(x) =1 − 𝑓𝐵(𝑚0) for some 𝑙0, 𝑚0L .  Then 

by our assumption               𝑡𝐴(𝑥0) = 𝑡𝐵(𝑦0) and 1 − 𝑓𝐴(𝑙0) = 1 − 𝑓𝐵(𝑚0).  For zL, we have                          

𝑡𝐴 𝐵(z)= { 𝑧≤𝑥𝑦
𝑠𝑢𝑝

min{𝑡𝐴(x), 𝑡𝐵(y)   min{𝑡𝐴(𝑧), 𝑡𝐵(𝑦0)} as  zz𝑦0   = 𝑡𝐴(𝑧), since 𝑡𝐴(𝑧),     𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =𝑡𝐴(𝑥0)  =  

𝑡𝐵(𝑦0) and 1 − 𝑓𝐴 𝐵(z)= { 𝑧≤𝑥𝑦
𝑠𝑢𝑝

min{1 − 𝑓𝐴(x),1- 𝑓𝐵(y)   min{1 − 𝑓𝐴(𝑧), 1-𝑓𝐵(𝑚0)} as  zz𝑚0  =1- 𝑓𝐴(𝑧), 

since  1 − 𝑓𝐴(𝑧)   1 − 𝑓𝐴𝑥𝐿
𝑠𝑢𝑝

(x)  =   1- 𝑓𝐵(𝑚0).  Hence AAB.  Similarly we can prove that BAB . 

ii) Suppose that A and B both do not attain their Sup for t and Sup for 1-f.  Since A do not attain its Sup for t 

and 1-f, we have 𝑡𝐴(𝑧)t zL and 1 − 𝑓𝐴(𝑧)k zL.  Then there exist 𝑦0L Such that 𝑡𝐵(𝑦0) 𝑡𝐴(𝑧) and 

there exist 𝑙0L such that                    1 − 𝑓𝐵(𝑙0) 1 − 𝑓𝐴(𝑧) But zz 𝑦0  and hence  𝑡𝐴 𝐵(z)= 

{ 𝑧≤𝑥𝑦
𝑠𝑢𝑝

min{𝑡𝐴(x), 𝑡𝐵(y)   min{𝑡𝐴(𝑧), 𝑡𝐵(𝑦0)}= 𝑡𝐴(𝑧) and  zz 𝑙0  , we have                                                                     

1- 𝑓𝐴 𝐵(z)= { 𝑧≤𝑥𝑦
𝑠𝑢𝑝

min{1 − 𝑓𝐴(x),1- 𝑓𝐵(y)   min{1 − 𝑓𝐴(𝑧), 1 − 𝑓𝐵(𝑙0)} =1- 𝑓𝐴(𝑧).  So that AAB.  Similarly, 

we can prove that BAB. 

Proposition 3.6: 

     Let A VS(L).  Then A is a VL of L  if and only if A+A =A and AA=A. 
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Proof: 

    We have AA+A and AAA.  Let A is a VL of L.  Then x,yL such that z=xy, we have 𝑉𝐴(𝑧) = 

𝑉𝐴(xy)min{ 𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}.  Therefore 𝑉𝐴(𝑧)   𝑧=𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}} = 𝑉𝐴𝐴(𝑧).  Hence AA+A.  Thus A=A+A.  

Now , x, yL such that z=xy, we have 𝑉𝐴(𝑧) = 𝑉𝐴(xy)min{ 𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}. Therefore 𝑉𝐴(𝑧)  

 𝑧=𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}} = 𝑉𝐴𝐴(𝑧).  Thus AAA.  Hence A=AA.  Conversely, suppose that A=A+A and A=AA.  Then 

x,yL. we have 𝑉𝐴(xy) = 𝑉𝐴+𝐴(xy)= {𝑥𝑦=𝑥1 𝑦1

𝑠𝑢𝑝
min{𝑉𝐴(𝑥1), 𝑉𝐴(𝑦1)}} min{𝑉𝐴(𝑥),𝑉𝐴(𝑦)} and 𝑉𝐴(xy) = 𝑉𝐴𝐴(xy)= 

{𝑥𝑦=𝑥1 𝑦1

𝑠𝑢𝑝
min{𝑉𝐴(𝑥1), 𝑉𝐴(𝑦1)}} min{𝑉𝐴(𝑥),𝑉𝐴(𝑦)}.  Hence A is a VL of L. 

Proposition 3.7: 

      Let A VS(L).  Then A VI(L) if and only if AA = A. 

Proof: 

     Suppose A VI(L).  Let zL, choose x,yL such that zxy.  Then 𝑉𝐴(𝑧)  𝑉𝐴(xy)min{𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}, since A VI of 

L.  So that 𝑉𝐴(𝑧)   𝑧 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴(𝑥), 𝑉𝐴(𝑦)}} = 𝑉𝐴𝐴(𝑧).  Hence AAA.  Clearly AAA.  Thus A = AA.  Conversely 

suppose that A = AA.  Let x,yL.  Then 𝑉𝐴(xy) = 𝑉𝐴𝐴(xy)= {𝑥𝑦=𝑥1 𝑦1

𝑠𝑢𝑝
min{𝑉𝐴(𝑥1), 𝑉𝐴(𝑦1)}}  min{𝑉𝐴(𝑥),𝑉𝐴(𝑦)} 

and 𝑉𝐴(xy) = 𝑉𝐴𝐴(xy)= {𝑥𝑦=𝑥1 𝑦1

𝑠𝑢𝑝
min{𝑉𝐴(𝑥1), 𝑉𝐴(𝑦1)}}  min{𝑉𝐴(𝑥),𝑉𝐴(𝑦)}.  Hence A is a VL of L. Now let 𝑧1, 𝑧2 

L such that 𝑧1   𝑧2.  Then            𝑉𝐴(𝑧2) = 𝑉𝐴𝐴(𝑧2) = { 𝑧2  𝑥2𝑦2

𝑠𝑢𝑝
min{𝑉𝐴(𝑥2), 𝑉𝐴(𝑦2)}}, 𝑥2, 𝑦2L  { 𝑧1 𝑥1𝑦1

𝑠𝑢𝑝
min{𝑉𝐴(𝑥1), 

𝑉𝐴(𝑦1)}} , as 𝑧1  ≤ 𝑧2  = 𝑉𝐴(𝑧1).  Thus 𝑉𝐴(𝑧2)  𝑉𝐴(𝑧1).  Hence A is a VI of L. 

Theorem 3.8: 

      Let  A, BVI(L).  Then ABVI(L). 

Proof: 

    Suppose that for some x, yL 𝑡𝐴𝐵(xy)  min{ 𝑡𝐴𝐵(x), 𝑡𝐴𝐵(y)}.  Let  𝑡𝐴𝐵(xy) = 𝑚0.  Then   𝑚0  𝑡𝐴𝐵(x) and  

𝑚0  𝑡𝐴𝐵(y).  This implies there exist a,b  L such that xab, 𝑚0 min{𝑡𝐴(𝑎), 𝑡𝐵(b)} and there exist c,dL such 

that ycd, 𝑚0 min{𝑡𝐴(𝑐), 𝑡𝐵(d)}.  So that 𝑚0 𝑡𝐴(𝑎), 𝑚0 𝑡𝐵(b), 𝑚0 𝑡𝐴(𝑐) and  𝑚0  𝑡𝐵(d).  Hence  𝑚0  

min{𝑡𝐴(𝑎), 𝑡𝐴(𝑐)}  𝑡𝐴(𝑎c),     since A a VI of L.  Also  𝑚0  min{𝑡𝐵(b), 𝑡𝐵(d)} 𝑡𝐵(bd), since B a VI of L.  Thus 

𝑡 𝐴𝐵(xy)    𝑥𝑦 𝑝𝑞
𝑠𝑢𝑝

{min{𝑡𝐴(𝑝), 𝑡𝐵(𝑞)}}, p,qL.  min{𝑡𝐴(𝑎𝑐),  𝑡𝐵(bd)}   𝑡0.  This contradicts 𝑡 𝐴𝐵(xy) =  𝑡0.  

Hence 𝑡 𝐴𝐵(xy)  min{ 𝑡𝐴𝐵(x), 𝑡𝐴𝐵(y)}, x,yL………..(1).  Similarly we can prove that  1 − 𝑓 𝐴𝐵(xy)  min{1- 

𝑓𝐴𝐵(x),1- 𝑓𝐴𝐵(y)}, x,yL………….(2).  Again suppose that 𝑡 𝐴𝐵(xy)max{𝑡 𝐴𝐵(x), 𝑡 𝐴𝐵(y)}, for some x,yL.  Let 

𝑘0 = 𝑡 𝐴𝐵(xy) and max{𝑡 𝐴𝐵(x), 𝑡 𝐴𝐵(y)} = 𝑡 𝐴𝐵(x),(say).  Then 𝑘0  𝑡 𝐴𝐵(x).  This implies there exist a,bL such 

that xab and min{𝑡𝐴(𝑎 ), 𝑡𝐵(b) }𝑘0.  So that 𝑡 𝐴𝐵(xy) =  𝑥𝑦 𝑝𝑞
𝑠𝑢𝑝

{min{𝑡𝐴(𝑝), 𝑡𝐵(𝑞)}}, p,qL  min {𝑡𝐴 𝑎 , 𝑡𝐵(b)} 

𝑘0 .  This contradicts 𝑘0 = 𝑡 𝐴𝐵(xy).  Consequently 𝑡 𝐴𝐵(xy)max{𝑡 𝐴𝐵(x), 𝑡 𝐴𝐵(y)}, for some x,yL………(3).  

Similarly we can prove 1- 𝑓 𝐴𝐵(xy)max{1-𝑓 𝐴𝐵(x), 1 − 𝑓 𝐴𝐵(y)}, for some x,yL.---------------(4).  Thus from 

(1),(2),(3),(4) ABVI(L). 

Theorem 3.9: 

   Let  A,BVI(L) with  𝑉𝐴𝑥𝐿
𝑠𝑢𝑝

(x) =  𝑉𝐵𝑥𝐿
𝑠𝑢𝑝

(x) and both A, B attain the sup of t and 1-f.[or both A,B do not attain the sup 

of t and 1-f].  Then AB is a VI generated by A and B. 
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Proof: 

    By Lemma 3.5 and Theorem 3.10, AB is a VI containing both A and B.  Let CVI(L) such that AC and BC.  Then 

for zL, we have 𝑉 𝐴𝐵(z) =  𝑧 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴(𝑥), 𝑉𝐵(𝑦)}}  𝑧 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐶(𝑥), 𝑉𝐶(𝑦)}} = 𝑡 𝐶 𝐶(z) = 𝑡𝐶(𝑧) , by Proposition 

3.9 Hence ABC.  Thus AB is the least VI containing A and B. We denote the set of all VI’s of L that attain both  

sup(t) = m and sup(1-f) = k by 𝑉𝐼 𝑚 ,𝑘 (𝐿) and the set of all VI’s of L that do not attain both the sup(t) = m and sup(1-

f) = k by 𝑉𝐼(𝑚 ,𝑘)(𝐿). 

Theorem 3.10: 

    The set  𝑉𝐼(𝑚 ,𝑘)(𝐿) [𝑉𝐼 𝑚 ,𝑘 (𝐿)] forms a Lattice under the ordering  with join and meet defined by AB = AB 

and AB = AB. 

Proof:      

        We know that AB = AB.  Now we show that AB  𝑉𝐼(𝑚,𝑘)(𝐿).  Let zL.   Then  𝑡 𝐴𝐵(z) = 

 𝑧 𝑥𝑦
𝑠𝑢𝑝

{min{𝑡𝐴(𝑥), 𝑡𝐵(𝑦)}} min{  𝑡𝐴𝑥𝐿
𝑠𝑢𝑝

(x) ,  𝑡𝐵𝑥𝐿
𝑠𝑢𝑝

(y) } = l.  We show that ‘l’ is the least upper bound of 𝑡 𝐴𝐵 .  Let 0, 

since l is the supremum of 𝑡𝐴  and 𝑡𝐵, there exist 𝑥1 , 𝑦1L such that 𝑡𝐴(𝑥1) t- and 𝑡𝐵(𝑦1)t-.  So that for 𝑧1  = 𝑥1 

𝑦1, we have           𝑡 𝐴𝐵(𝑧1) =  𝑧1 𝑥𝑦
𝑠𝑢𝑝

{min{𝑡𝐴(𝑥), 𝑡𝐵(𝑦)}}min{𝑡𝐴(𝑥1), 𝑡𝐵(𝑦1) }l-.  Hence l is the least upper bound of   

𝑡 𝐴𝐵 .  Similarly, we can prove m is the least upper bound of 1-𝑓 𝐴𝐵 . Thus       AB 𝑉𝐼(𝑚,𝑘)(𝐿) . Clearly ,  AB 

𝑉𝐼(𝑚,𝑘)(𝐿).  Thus (𝑉𝐼 𝑚 ,𝑘  𝐿 ,,,) forms a Lattice. 

 

Theorem 3.11: 

    If L is distributive then the lattice 𝑉𝐼(𝑚,𝑘)(𝐿) [𝑉𝐼 𝑚 ,𝑘 (𝐿)] is distributive. 

Proof: 

      Let A,B,C  𝑉𝐼(𝑚 ,𝑘)(𝐿).  Then by distributive inequality, which is satisfied by every Lattice, we  have 

A(BC)(AB)(AC).  The proof of the theorem will be complete if we show that A(BC)(AB)(AC).  If 

possible, suppose A(BC) (AB)(AC)  then there exist zL such that 𝑉A(BC)(𝑧) 𝑉(AB)(AC)(𝑧).  Since L is 

distributive AB = A+B, so AB = A+B. So that 𝑉A(B+C)(𝑧) 𝑉 AB +(AC)(𝑧).  Now, 𝑉A(B+C)(𝑧) 𝑉 AB +(AC)(𝑧) 

implies min{𝑉𝐴(𝑧), 𝑉𝐵+𝐶(𝑧)}   𝑧= 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴𝐵(𝑥), 𝑉𝐴𝐶(𝑦)}}.  This implies min{𝑉𝐴(𝑧),  𝑧= 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐵(𝑥), 𝑉𝐶(𝑦)}} 

  𝑧= 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴𝐵  (𝑥), 𝑉𝐴𝐶(𝑦)}}.  Then there exist 𝑥0 ,𝑦0  L such that z = 𝑥0   𝑦0  and 𝑉𝐴(𝑧), min{𝑉𝐵(𝑥0), 𝑉𝐶(𝑦0) }  

 𝑧= 𝑥𝑦
𝑠𝑢𝑝

{min{𝑉𝐴𝐵(𝑥), 𝑉𝐴𝐶(𝑦)}}  min{𝑉𝐴𝐵 𝑥0   , 𝑉𝐴𝐶(𝑦0) } =  min{𝑉𝐴(𝑥0), 𝑉𝐵 𝑥0 , 𝑉𝐴(𝑦0), 𝑉𝐶 𝑦0 }.  Hence  min 

{𝑉𝐴(𝑥0), 𝑉𝐵 𝑥0 , 𝑉𝐴(𝑦0), 𝑉𝐶 𝑦0 } = 𝑉𝐴(𝑥0) or  𝑉𝐴(𝑦0).  So that 𝑉𝐴(𝑧) 𝑉𝐴(𝑥0) or  𝑉𝐴(𝑦0).   But since  A 𝑉𝐼(𝑚 ,𝑘)(𝐿) and 

𝑥0 , 𝑦0 z  we have  𝑉𝐴(𝑥0) 𝑉𝐴 𝑧  and  𝑉𝐴(𝑦0) 𝑉𝐴(𝑧).  Thus, 𝑉𝐴(𝑧) 𝑉𝐴(𝑥0) or  𝑉𝐴(𝑦0) is not true.  So our assumption 

is wrong, consequently A(BC)(AB)(AC).  Hence 𝑉𝐼(𝑚 ,𝑘)(𝐿) is a distributive Lattice. 
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