

LOCAL FUNCTIONS ON π -OPEN SETS IN IDEAL TOPOLOGICAL SPACES

I. Arockiarani & A. Selvi

Department of Mathematics, Nirmala College for Women, Coimbatore, India

ABSTRACT

The focus of this paper is to define the local function on π -open set called π -local function and to introduce a new class of set operator ()^{*}utilizing π -open neighbourhood namely the set operator ()^{* π} in ideal topological spaces. We derive several characterizations and properties of such function and operator in detail.

Keywords: π -open set, π -closed set, π -local function, set operator Ψ^{π} , ideal topological space

1. INTRODUCTION

The concept explored via ideals has a lengthy and interesting historic development. Kuratowski [10] introduced the concept of ideal topological spaces. The notion of Kuratowski operator plays a vital role in defining ideal topological space which has its application in localization theory in set topology by Vaidyanathaswamy [13]. Ideals have been frequently used in the fields closely related to topology such as real analysis measure theory and lattice theory. In 1990, Jankovic and Hamlett [6, 7] developed new topologies from old via ideals and introduced I-open sets with respect to an ideal I in 1992. In this paper, analogously to the local function $A^*(\mathcal{I}, \tau)$, we define π -local function with respect to \mathcal{I} and τ . Moreover we introduce a set operator Ψ^{π} in ideal topological spaces and study their properties.

2. PRELIMINARIES

Throughout this paper (X, τ) is a topological space on which no separation axioms are assumed unless explicitly stated. The notation (X, τ, \mathcal{I}) will denote the topological space (X, τ) and an ideal \mathcal{I} on X with no separation properties assumed. For $A \subseteq (X, \tau)$, Cl(A) and Int(A) respectively denote the closure and interior of A with respect to τ . N(*x*) denotes the open neighbourhood system at a point $x \in X$ and P(X) denotes the power set of X.

Definition: 2.1[10]

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following properties: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$.

(2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) .

GLOBAL JOURNAL OF ADVANCED RESEARCH (Scholarly Peer Review Publishing System)

Definition: 2.2[10]

For a subset A of X, $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for each neighbourhood } U \text{ of } x\}$ is called the local function of A with respect to \mathcal{I} and τ . We simply write A^* instead of $A^*(\mathcal{I})$.

Definition: 2.2[10]

It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$ which finar than τ .

Definition: 2.3[10]

A basis $\beta(\mathcal{I}, \tau)$ for $\tau^*(\mathcal{I})$ can be described as follows: $\beta(\mathcal{I}, \tau) = \{U - E: U \in \tau \text{ and } E \in \mathcal{I}\}.$

Definition: 2.4

A subset A of an ideal topological space (X, τ, I) is

- (1) *-perfect [5], if A =*A**
- (2) *- closed [6], if $A^* \subseteq A$
- (3) *-dense [8], if $Cl^*(A) = X$
- (4) τ^* -closed set [6], if A = Cl^{*}(A)

Definition: 2.5[15]

A subset A of a space (X, τ) is said to be regular open set, if A = int(cl(A)).

Definition: 2.6[13]

Finite union of regular open sets in (X, τ) is π -open in (X, τ) . The complement of π -open in (X, τ) is π -closed in (X, τ) .

Definition: 2.7[9]

Let (X, τ, \mathcal{I}) be an ideal topological space and A be a subset of X. Then $A_*(\mathcal{I}, \tau) = \{x \in X \mid A \cap U \notin \mathcal{I} \text{ for every } U \in SO(X, x)\}$ is called the semi local function of A with respect to \mathcal{I} and τ , where $SO(X, x) = \{U \in SO(X) \mid x \in U\}$.

Definition: 2.8[1]

Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following operator:

 $\Gamma(A)$ $(\mathcal{I}, \tau) = \{x \in X \mid A \cap cl(U) \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ is called the local closure function of A with respect to \mathcal{I} and τ , where $\tau(x) = \{U \in \tau : x \in U\}$.

Definition: 2.9[2]

Given a space (X, τ, \mathcal{I}) , a set operator $()^{*p}$: $P(X) \to P(X)$ is called the pre-local function of \mathcal{I} with respect to τ is defined as follows; for $A \subseteq X$, $(A)^{*p}(\mathcal{I}, \tau) = \{x \in X/U_x \cap A \notin \mathcal{I}, for every U_x \in PN(x)\}$, where $PN(x)\} = \{U \in PO(x) \mid x \in U\}$.

Lemma: 2.10[6]

Let (X, τ, I) be an ideal space and A, B subsets of X. (1). If $A \subset B$, then $A^* \subset B^*$. (2). If $G \in \tau$, then $G \cap A^* \subset (G \cap A)^*$ (3). $A^* = Cl(A^*) \subset Cl(A)$

3. 3. π -LOCAL FUNCTIONS

Definition: 3.1

Given a space (X, τ, \mathcal{I}) , a set operator $()^{*\pi}$: $P(X) \to P(X)$ is called the π -local function of \mathcal{I} with respect to τ is defined as follows: for $A \subseteq X$, $(A)^{*\pi}(\mathcal{I}, \tau) = \{x \in X / U_x \cap A \notin \mathcal{I}, for every \ U_x \in \pi \ N(x)\}$, where $\pi N(x)\} = \{U \in \pi O(x) \mid x \in U\}$. We write π -local function as $A^{*\pi}(\mathcal{I})$ or $A^{*\pi}$ or $A^{*\pi}(\mathcal{I}, \tau)$.

Preposition: 3.2

Every local function is π -local function.

Proof:

Every π -open set is open. Therefore $U \in \pi N(x) \Longrightarrow U \in N(x)$.

Let $x \in A^* \Longrightarrow U_x \cap A \notin \mathcal{I}$, for every $U_x \in N(x)$

$$\Rightarrow \mathbf{U}_{x} \cap \mathbf{A} \notin \mathcal{I}, for every \ \mathbf{U}_{x} \in \pi \mathbf{N}(x) \}$$

$$\Rightarrow x \in A^{*\pi}$$

$$\Rightarrow A^{\hat{}} \subseteq A^{\hat{}}$$

Hence every local function is π -local function.

Remark: 3.3

 π -local function need not be local function as shown in the following example.

Example: 3.4

 $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}\}$. Take $A = \{c\}$. Then $A^* = \{c\}$ and $A^{*\pi} = \{c, d\}$. Thus $\{c, d\} \not\subseteq \{c\}$. Hence $A^{*\pi} \not\subseteq A^*$.

Remark: 3.5

The collection of all π -open subsets of a space (X, τ) fails to form an ideal on X.

Example: 3.6

 $X = \{a, b, c, d\}, \tau = \{X, \phi, \{d\}, \{a,b\}, \{a,b,d\}\} \text{ and } I = \{\phi, \{a\}, \{b\}, \{a,b\}\}.$

Here $\{a, b\}$ is π -open set, but $\{a\}$ and $\{b\}$ are not π -open sets. Therefore the collection of all π -open subsets does not form an ideal.

Remarks: 3.7

(1) For an ideal topological (X, τ , J), $\tau^{*\pi}$ (J) be the topology on X generated by the basis

 $\{\mathbf{U}-\mathbf{E}:\mathbf{U}\in\pi\mathbf{O}(x)\text{ and }\mathbf{E}\in\mathcal{I}\ \}.$

(2) The closure operator in $\tau^{*\pi}(\mathcal{I})$ denoted by $\operatorname{Cl}^{*\pi}$ is defined as follows: for $A \subseteq X$, $\operatorname{Cl}^{*\pi}(A) = A \cup A^{*\pi}$.

Lemma: 3.8

 $\tau^{*\pi}\left(\mathcal{I}\right) = \{ U \subseteq X : \operatorname{Cl}^{*\pi}\left(X - U\right) = X - U \}$

Proof:

Let $\mathcal{A} = \{ U - E : U \in \pi O(x) \text{ and } E \in \mathcal{I} \}$ $\operatorname{Cl}^{*\pi} (X - U) = X - U \Leftrightarrow (X - U)^{*\pi} \subseteq X - U$ $\Leftrightarrow U \subseteq X - (X - U)^{*\pi}$

Therefore $x \in U \Rightarrow x \notin (X - U)^{*\pi}$. Then there exists $V \in \pi N(x)$, $V \cap (X - U) \in \mathcal{I}$. Let $\mathcal{I} = V \cap (X - U)$ then $x \in V - \mathcal{I} \subseteq U$ where $V \in \pi N(x)$ and $\mathcal{I} \in \mathcal{I}$. But $\tau^{*\pi}$ is the topology with \mathcal{A} as a basis. Therefore $\tau^{*\pi}(\mathcal{I}) = \{U \subseteq X: Cl^{*\pi}(X - U) = X - U\}$.

Corollary: 3.9

For $A \subseteq (X \tau, \mathcal{I})$ we have

(1) If $\mathcal{I} = \{\phi\}$ then $A^{*\pi}(\{\phi\}) = \pi$ -Cl(A) and $Cl^{*\pi}(A) = \pi$ -Cl(A)

(2) If $\mathcal{I} = P(X)$ then $A^{*\pi}(P(X)) = \phi$ and $Cl^{*\pi}(A) = A$. Hence in this case $\tau^{*\pi}(\mathcal{I})$ is the discrete topology.

Remark: 3.10

 $\tau^{*\pi}(\mathcal{I}) \subseteq \tau^{*}(\mathcal{I})$. But the converse need not be true.

Example: 3.11

Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ on a set $X = \{a, b, c, d\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Therefore $\tau^*(\mathcal{I}) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $\tau^{*\pi}(\mathcal{I}) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$. Hence $\tau^*(\mathcal{I}) \not\subseteq \tau^{*\pi}(\mathcal{I})$. Theorem 3.12

Theorem: 3.12

Let (X, τ, \mathcal{I}) be a space and A, B \subseteq X then the following statements hold.

(1) $\phi^{*\pi}(\mathcal{I}) = \phi$

(2) If $A \subseteq B$ then $A^{*\pi}(\mathcal{I}) \subseteq B^{*\pi}(\mathcal{I})$

(3) $A^{*\pi}(\mathcal{I}) = \pi - Cl(A^{*\pi}(\mathcal{I})) \subseteq \pi - Cl(A)$

(4) $(A \cup B)^{*\pi}(\mathcal{I}) = A^{*\pi}(\mathcal{I}) \cup B^{*\pi}(\mathcal{I})$

(5) $(A \cap B)^{*\pi}(\mathcal{I}) \subseteq A^{*\pi}(\mathcal{I}) \cap B^{*\pi}(\mathcal{I})$ (6) $A^{*\pi}(\mathcal{I}) - B^{*}(\mathcal{I}) \subseteq (A - B)^{*\pi}(\mathcal{I})$ (7) $(A^{*\pi})^{*\pi}(\mathcal{I}) \subseteq A^{*\pi}(\mathcal{I})$ (8) If $E \in \mathcal{I}$ then $(A \cup E)^{*\pi}(\mathcal{I}) = A^{*\pi}(\mathcal{I}) = (A - E)^{*\pi}(\mathcal{I})$ (9) If $U \in \pi O(X)$ then $U \cap A^{*\pi}(\mathcal{I}) = U \cap (U \cap A)^{*\pi} \subseteq (U \cap A)^{*\pi}(\mathcal{I})$ **Proof:** (1) $\phi^{*\pi}(\mathcal{I}) = \{x \in X / U_x \cap \phi \notin \mathcal{I}, for every U_x \in \pi N(x)\} = \phi$. Therefore $\phi^{*\pi}(\mathcal{I}) = \phi$. (2) Let $A \subseteq B$. $A^{*\pi}(\mathcal{I}) = \{x \in X / U_x \cap A \notin \mathcal{I}, for every U_x \in \pi N(x)\}$. $x \in A^{*\pi}(\mathcal{I}) \Rightarrow U_x \cap A \notin \mathcal{I}, for every U_x \in \pi N(x)$ $\Rightarrow U_x \cap B \notin \mathcal{I}, for every U_x \in \pi N(x)$

This shows that $x \in B^{*\pi}(\mathcal{I})$. Hence $A^{*\pi}(\mathcal{I}) \subseteq B^{*\pi}(\mathcal{I})$.

(3) To prove $A^{*\pi}(\mathcal{I}) = \pi$ -Cl($A^{*\pi}(\mathcal{I})$) $\subseteq \pi$ -Cl(A) π -Cl($A^{*\pi}(\mathcal{I})$) is the smallest π -closed set containing $A^{*\pi}$. Therefore $A^{*\pi} \subseteq \pi$ -Cl($A^{*\pi}$). To prove $A^{*\pi} \supseteq \pi$ -Cl($A^{*\pi}$). Let $x \in \pi$ -Cl($A^{*\pi}$). Therefore every $U_x \in \pi N(x)$ intersects $A^{*\pi}$.

Thus $U_x \cap A^{*\pi} \neq \phi$. Let $y \in U_x \cap A^{*\pi}$. Then $U_x \in \pi N(y)$ and $y \in A^{*\pi} \Rightarrow U_x \cap A^{*\pi} \notin \mathcal{I}$ which implies that $x \in A^{*\pi}$. Therefore π -Cl($A^{*\pi}$) $\subseteq A^{*\pi}$. Thus $A^{*\pi}(\mathcal{I}) = \pi$ -Cl($A^{*\pi}(\mathcal{I})$).

<u>Claim</u>: $A^{*\pi} \subseteq \pi$ -Cl(A). Let $x \in A^{*\pi} \Rightarrow U_x \cap A \neq \phi$ for every $U_x \in \pi N(x)$. This shows that $x \in \pi$ -Cl(A). Thus $A^{*\pi} \subseteq \pi$ -Cl(A). Hence $A^{*\pi}(\mathcal{I}) = \pi$ -Cl(A).

 $\begin{aligned} (4) \ (A \cup B)^{*\pi}(\mathcal{I}) &= \{ x \in X / U_x \cap (A \cup B) \notin \mathcal{I} \text{ for every } U_x \in \pi N(x) \} \\ &= \{ x \in X / (U_x \cap A) \cup (U_x \cap B) \notin \mathcal{I} \text{ for every } U_x \in \pi N(x) \} \\ &= \{ x \in X / U_x \cap A \notin \mathcal{I} \text{ or } U_x \cap B \notin \mathcal{I} \text{ for every } U_x \in \pi N(x) \} \\ &= \{ x \in X / U_x \cap A \notin \mathcal{I} \text{ for every } U_x \in \pi N(x) \} \text{ or } \{ x \in X / U_x \cap B \notin \mathcal{I} \text{ for every } U_x \in \pi N(x) \} \\ &= A^{*\pi}(\mathcal{I}) \cup B^{*\pi}(\mathcal{I}). \end{aligned}$

(5) By (2) we know that $A \subseteq B \Rightarrow A^{*\pi} \subseteq B^{*\pi}$ $\Rightarrow (A \cap B)^{*\pi} \subseteq A^{*\pi} \text{ and } (A \cap B)^{*\pi} \subseteq B^{*\pi}$ $\Rightarrow (A \cap B)^{*\pi}(\mathcal{I}) \subseteq A^{*\pi}(\mathcal{I}) \cap B^{*\pi}(\mathcal{I})$

(6) $A^{*\pi}(\mathcal{I}) - B^{*\pi}(\mathcal{I}) = \{x \in X/ U_x \cap A \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\} - \{x \in X/ U_x \cap B \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\} = \{x \in X/ U_x \cap (A-B) \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\} = (A-B)^{*\pi}(\mathcal{I}).$

(7) By (3) $A^{*\pi} \subseteq \pi$ -Cl(A). Replace A by $A^{*\pi}$. Then $(A^{*\pi})^{*\pi} \subseteq \pi$ -Cl $(A^{*\pi}) = A^{*\pi}$

(8) Let $E \in \mathcal{J}$. $(A \cup E)^{*\pi} = A^{*\pi} \cup E^{*\pi} = A^{*\pi} [\because E^{*\pi} = \phi$ by the definition] $(A-E)^{*\pi} = \{x \in X/U_x \cap (A-B) \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\}$ $= \{x \in X/U_x \cap A \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\}$ $= A^{*\pi}$ Therefore $(A \cup E)^{*\pi}(\mathcal{I}) = A^{*\pi}(\mathcal{I}) = (A-E)^{*\pi}(\mathcal{I}).$

(9) Let $U \in \pi O(X)$. $U \cap A^{*\pi} = U \cap \{x \in X / U_x \cap A \notin I, for every U_x \in \pi N(x)\}$

GLOBAL JOURNAL OF ADVANCED RESEARCH (Scholarly Peer Review Publishing System)

= U \cap { $x \in X / U_x \cap (U \cap A) \notin \mathcal{I}, for every U_x \in \pi N(x) }$ = U \cap (U \cap A)^{* π} \subseteq (U \cap A)^{* π} Hence $U \cap A^{*\pi}(\mathcal{I}) = U \cap (U \cap A)^{*\pi} \subseteq (U \cap A)^{*\pi}(\mathcal{I}).$ **Corollary: 3.13** If (X, τ, \mathcal{I}) is a space and $A \subseteq X$ then the following hold: (1) $(A^{*\pi})^{*\pi} \subseteq A^{*\pi} = \pi - Cl(A^{*\pi}) \subseteq \pi - Cl(A).$ (2) $(A^{*\pi})^{*\pi} \subseteq \pi$ -Cl $(A^{*\pi}) \subseteq \pi$ -Cl(A)(3) π -Cl(A^{* π}) = Cl(A^{* π}) if A^{* π} is dense (4) $A^* \subseteq A^{*\pi} \subseteq \pi$ -Cl(A) Theorem: 3.14 Let (X, τ, \mathcal{I}) be a space and $A \subseteq X$ then the following hold: (1). $(X-E)^{*\pi} = X^{*\pi}$, if $E \in \mathcal{I}$ (2). $[X - (A - E)]^{*\pi} = [(X - A) \cup E]^{*\pi}, E \in \mathcal{I}$ **Proof:** (1) Let (X, τ, \mathcal{I}) be a space and $A \subseteq X$. $x \in (X-E)^{*\pi} \Rightarrow \{ x \in X / U_x \cap (X-E) \notin \mathcal{I}, for every U_x \in \pi N(x) \}$ \Rightarrow { $x \in X/U_x \cap X$)-($U_x \cap E$) $\notin \mathcal{I}$, for every $U_x \in \pi N(x)$ } \Rightarrow U_x \cap X \notin I, for every U_x $\in \pi N(x)$ $\Rightarrow x \in X^{*\pi}$ \Rightarrow $(X-E)^{*\pi} \subseteq X^{*\pi}$ $x \in X^{*\pi} \Rightarrow U_x \cap X \notin \mathcal{I}, for every U_x \in \pi N(x)$ \Rightarrow U_x \cap X)- (U_x \cap E) \notin \mathcal{I} , for every U_x $\in \pi N(x)$ \Rightarrow U_x \cap (X–E) \notin J, for every U_x $\in \pi N(x)$ $\Rightarrow x \in (X - E)^{*\pi}$ $\Rightarrow X^{*\pi} \subseteq (X - E)^{*\pi}$ Therefore $(X-E)^{*\pi} = X^{*\pi}$, if $E \in \mathcal{I}$. (2) If $E \in \mathcal{I}$ then $(A \cup E)^{*\pi} = A^{*\pi} = (A - E)^{*\pi}$ Replace A by X-A.

Then $[(X-A) \cup E]^{*\pi} = (X-A)^{*\pi} = (X-(A-E))^{*\pi}$ The following theorem gives some properties for the operator $Cl^{*\pi}$

Theorem: 3.15

For arbitrary subsets A and B of X we have (1) $A \subseteq B$ implies $Cl^{*\pi}(A) \subseteq Cl^{*\pi}(B)$

(2) $\operatorname{Cl}^{*\pi}(A \cup B) = \operatorname{Cl}^{*\pi}(A) \cup \operatorname{Cl}^{*\pi}(B)$

- (3) $\operatorname{Cl}^{*\pi}(A \cap B) \subseteq \operatorname{Cl}^{*\pi}(A) \cap \operatorname{Cl}^{*\pi}(B)$
- (4) $\operatorname{Cl}^{*\pi}(\operatorname{Cl}^{*\pi}(A)) \subseteq \operatorname{Cl}^{*\pi}(A)$

Theorem: 3.16

For any A, B \subseteq X, π -Cl(A^{* π}) \cup π -Cl(B^{* π}) \subseteq π -Cl(A^{* π} \cup B^{* π})

Proof:

 $\pi - Cl(A^{*\pi}) \cup \pi - Cl(B^{*\pi}) = (A^{*\pi})^{*\pi} \cup (B^{*\pi})^{*\pi} \subseteq \pi - Cl(A^{*\pi}) \cup \pi - Cl(B^{*\pi}) = \pi - Cl((A^{*\pi} \cup B^{*\pi})).$ Therefore $\pi - Cl(A^{*\pi}) \cup \pi - Cl(B^{*\pi}) \subseteq \pi - Cl(A^{*\pi} \cup B^{*\pi}).$

Theorem: 3.17

Let (X, τ) be a space and \mathcal{I} and \mathcal{J} are two ideals on X and let A be a subset of X then $A^{*_{\pi}}(\mathcal{J}) \subseteq A^{*_{\pi}}(\mathcal{I})$, if $\mathcal{I} \subseteq \mathcal{J}$. **Proof:**

 $A^{*\pi}(\mathcal{J}) = \{ x \in X/ U_x \cap A \notin \mathcal{J}, for every U_x \in \pi N(x) \}$ $\subseteq \{ x \in X/ U_x \cap A \notin \mathcal{I}, for every U_x \in \pi N(x) \} = A^{*\pi}(\mathcal{I}).$

GLOBAL JOURNAL OF ADVANCED RESEARCH (Scholarly Peer Review Publishing System)

Hence $A^{*\pi}(\mathcal{J}) \subseteq A^{*\pi}(\mathcal{J})$.

Theorem: 3.18

If \mathcal{I} and \mathcal{J} are two ideals on (X, τ) such that $\mathcal{I} \subseteq \mathcal{J}$ then $\tau^{*\pi}(\mathcal{I}) \subseteq \tau^{*\pi}(\mathcal{J})$.

Proof:

Let $A \in \tau^{*\pi}(\mathcal{I}) \Rightarrow (X - A)$ is $\tau^{*\pi}(\mathcal{I})$ closed.

 \Rightarrow Cl^{* π}(X - A) = (X - A)

 $\Rightarrow (X - A) \cup (X - A)^{*\pi} = (X - A)$

$$\Rightarrow \, \left({\rm X} - {\rm A} \right)^{*_{\pi}} \left(\mathcal{I} \right) \subseteq \, \left({\rm X} - {\rm A} \right)$$

$$\Rightarrow (X - A)^{*\pi} (\mathcal{J}) \subseteq (X - A)$$

 \Rightarrow A $\in \tau^{*\pi}(\mathcal{J})$

Hence $\tau^{*\pi}(\mathcal{I}) \subseteq \tau^{*\pi}(\mathcal{J})$.

Theorem: 3.19

Let (X, τ, \mathcal{I}) is a space and $A \subseteq X$ then $A^{*\pi} - (A^{*\pi})^{*\pi} \subseteq (A - A^{*\pi})^{*\pi}$

Proof:

Let $x \in A^{*\pi} - (A^{*\pi})^{*\pi}$. Then $x \in A^{*\pi}$. That is $U_x \cap A \notin \mathcal{I}$, for every $U_x \in \pi N(x)$. Thus $U_x \cap ((A - A^{*\pi})^{*\pi}) \notin \mathcal{I}$, for every $U_x \in \pi N(x)$. Therefore $x \in (A - A^{*\pi})^{*\pi}$. Hence $A^{*\pi} - (A^{*\pi})^{*\pi} \subseteq (A - A^{*\pi})^{*\pi}$.

Theorem: 3.20

Let (X, τ) be a space and \mathcal{J} and \mathcal{J} are two ideals on X and let A be a subset of X then $A^{*\pi}(\mathcal{J} \cap \mathcal{J}) = A^{*\pi}(\mathcal{J}) \cup A^{*\pi}(\mathcal{J})$ where $\mathcal{J} \cap \mathcal{J}$ is an ideal on X.

Proof:

Let (X, τ) be a space and \mathcal{I} and \mathcal{J} are two ideals on X and let A be a subset of X. Also $\mathcal{I} \cap \mathcal{J}$ is an ideal on X. $A^{*\pi}(\mathcal{I} \cap \mathcal{J}) = \{x \in X/ U_x \cap A \notin \mathcal{I} \cap \mathcal{J}, for every U_x \in \pi N(x)\}$

 $= \{x \in X / U_x \cap A \notin \mathcal{I} \text{ or } U_x \cap A \notin \mathcal{J}, \text{ for every } U_x \in \pi N(x)\}$ = $\{x \in X / U_x \cap A \notin \mathcal{I} \text{ for every } U_x \in \pi N(x)\} \cup x \in X - U_x \cap A \notin \mathcal{J}$ for every $U_x \in \pi N(x)\}$ = $A^{*\pi}(\mathcal{I}) \cup A^{*\pi}(\mathcal{J}).$

Theorem: 3.21

Let (X, τ) be a space and \mathcal{I} and \mathcal{J} are two ideals on X and A \subseteq X then $A^{*\pi}$ $(\mathcal{I} \cup \mathcal{J}, \tau) = A^{*\pi}$ $(\mathcal{I}, \tau^{*\pi}(\mathcal{J})) \cap A^{*\pi}$ $(\mathcal{J}, \tau^{*\pi}(\mathcal{I}))$, where $\mathcal{I} \cup \mathcal{J} = \{E \cup H \setminus E \in \mathcal{I} \text{ and } H \in \mathcal{J}\}$ is an ideal on X.

Proof:

Let (X, τ) be a space and \mathcal{I} and \mathcal{J} are two ideals on X and A \subseteq X. Suppose $x \notin A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau)$. Then there exists $U \in \pi N(x)$ such that $U \cap A \in (\mathcal{J} \cup \mathcal{J})$. Let $E \in \mathcal{J}$ and $H \in \mathcal{J}$ such that $U \cap A = E \cup H$. Without loss of generality we assume that $E \cap H = \phi$. Thus $(U \cap A) - E = H$ and $(U \cap A) - H = E$. This shows that $(U - E) \cap A = H \in \mathcal{J}$ and $(U - H) \cap A = E \in \mathcal{J}$. $\Longrightarrow x \notin A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{I})) \text{ or } x \notin A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J})).$ Hence $A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{I})) \cap A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J})) \subseteq A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau)$ ------(1) To prove $A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau) \subseteq A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J})).$ Let $x \notin A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J}))$. Then there exists $U \in \pi N(x) \supseteq U \cap A \in \mathcal{I}$ in $\tau^{*\pi}(\mathcal{J})$. Therefore $U \cap A = E$ for $E \in \mathcal{I}$ implies that $(U - E) \cap A \in \mathcal{I}$. Hence $U \cap A = E \cup H \in (\mathcal{J} \cup \mathcal{J}, \tau)$. This shows that $x \notin A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau)$. Thus $A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau) \subseteq A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J}))$ -----(2)

(Scholarly Peer Review Publishing System)

Similarly $A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau) \subseteq A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{I}))$ -------(3) From (2) and (3), $A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau) \subseteq A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{J})) \cap A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{I}))$ ------(4) From (1) and (4), $A^{*\pi}(\mathcal{I} \cup \mathcal{J}, \tau) = A^{*\pi}(\mathcal{I}, \tau^{*\pi}(\mathcal{J})) \cap A^{*\pi}(\mathcal{J}, \tau^{*\pi}(\mathcal{I})).$ **Theorem: 3.22** The following are equivalent for a subset $A \subseteq (X, \tau, \mathcal{I}).$ (1) $A \in \tau^{*\pi}$ (2) (X - A) is $\tau^{*\pi}$ closed (3) $(X - A^{*\pi}) \subseteq (X - A)$ (4) $A \subseteq X - (X - A)^{*\pi}$

4. THE SET OPERATOR $\Psi^{\pi}(\mathcal{I},\tau)$

Definition: 4.1

Let (X, τ, \mathcal{I}) be a space, a set operator $\Psi^{\pi}(\mathcal{I}, \tau) : P(X) \to \tau$ is defined as follows: For every $A \subseteq X$, $\Psi^{\pi}(\mathcal{I}, \tau) : \{x \in X / \text{there} exists a U \in \pi N(X) \text{ such that } U - A \in \mathcal{I} \}$. We denote $\Psi^{\pi}(\mathcal{I}, \tau)$ simply by Ψ^{π} .

Lemma: 4.2

The operator $\Psi^{\pi}(\mathcal{I},\tau)$ is a natural complement to the operator ()^{* π}.

Proof:

To prove $\Psi^{\pi}(\mathcal{I},\tau) = X - (X-A)^{*\pi}$. Let $x \in \Psi^{\pi}(A) \Leftrightarrow$ there exists $U \in \pi N(X)$ such that $U - A \in \mathcal{I}$ } \Leftrightarrow there exists $U \in \pi N(X)$ such that $U \cap (U - A) \in \mathcal{I}$ } $\Leftrightarrow x \notin (X-A)^{*\pi}$ $\Leftrightarrow x \in X - (X-A)^{*\pi}$ Hence $\Psi^{\pi}(\mathcal{I},\tau) = X - (X-A)^{*\pi}$. Therefore the operator $\Psi^{\pi}(\mathcal{I},\tau)$ is a natural complement to the operator ()^{*\pi}.

Corollary: 4.3

For $A \subseteq (X, \tau, \mathcal{I})$, we have (1) If $\mathcal{I} = \{\phi\}$ then $\Psi^{\pi}(A) = \pi$ -int(A) (2) If $\mathcal{I} = P(X)$ then $\Psi^{\pi}(A) = X$

Lemma: 4.4

 $\Psi^{\pi}(A) \subseteq \Psi(A)$ for every $A \subseteq (X, \tau, \mathcal{I})$.

Remark: 4.5

The converse of the above need not be true.

Example: 4.6

Theorem: 4.7

Let (X, τ, \mathcal{I}) be a ideal space and A, B \subseteq P(X). Then

(1) If $A \subseteq B$ then $\Psi^{\pi}(A) \subseteq \Psi^{\pi}(B)$

(2) If A, B \in P(X) then $\Psi^{\pi}(A \cap B) \subseteq \Psi^{\pi}(A) \cap \Psi^{\pi}(B)$

(3) If $U \in \tau^{*\pi}(\mathcal{I})$ then $U \subseteq \Psi^{\pi}(U)$

(4) If $A \in P(X)$ then $\Psi^{\pi}(A) \subseteq \Psi^{\pi}(\Psi^{\pi}(A))$

(5) If $A \in P(X)$ then $\Psi^{\pi}(A) = \Psi^{\pi}(\Psi^{\pi}(A)) \Leftrightarrow (X-A)^{*\pi} = ((X-A)^{*\pi})^{*\pi}$

- (6) If $A \in \mathcal{I}$ then $\Psi^{\pi}(A) = X X^{*\pi}$
- (7) If $A \in P(X)$, $E \in \mathcal{I}$ then $\Psi^{\pi}(A-E) = \Psi^{\pi}(A)$
- (8) If $A \in P(X)$, $E \in \mathcal{I}$ then $\Psi^{\pi}(A \cup E) = \Psi^{\pi}(A)$
- (9) If $(A B) \cup (B A) \in \mathcal{I}$ then $\Psi^{\pi}(A) = \Psi^{\pi}(B)$

Corollary: 4.8

If (X, τ, \mathcal{I}) is a ideal space, $A \subseteq X$ and $E \in \mathcal{I}$ then $\Psi^{\pi}(A-E) = \Psi^{\pi}(A \cup E) = \Psi^{\pi}(A)$.

5. **REFERENCES**

- [1] Ahamad Al-omari and Takashi Noiri, Local closure functions in ideal topological spaces, Novi Sad j Math. 43(2)(2013) 139-149.
- [2] I.Arockiarani and A.A.Nithya, On $W\beta$ -I^{*P}-open sets via pre local functions, Int. Mathematical forum, 5(63)(2010) 3135- 3140.
- [3] N. Bourbaki, General topology, Part I, addition Wesley, Reading, Mass 1966.
- [4] J. Dugunji, topology, Allyn and Bacon, 1966.
- [5] E. Hayashi, Topologies defined by local properties. Math. Ann., 156 (1964) 205-215.
- [6] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, American Mathematical Monthly, 97 (1990) 295-310.
- [7] D.Jankovic and T.R. Hamlett, Compatible extensions of ideals, Boll.Un.Mat. Ita.B(7) 6(3) (1992) 453-465.
- [8] D.Jankovic, M.Gangter and D. Rose, Ideal resolvability, Topology and its Appl. 93(1999) 1-16
- [9] M. khan, T. Noiri, semi local functions in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 2(1) (2010) 36-42.
- [10] Kuratowski, Topology, Vol I, Academic Press, New York, 1966.
- [11] Njastad. O, Remarks on topologies defined by local properties, Norske Vid-Akad. Oslo (N.S), 8(1966) 1-6.
- [12] M.H. stone, Applications of the theory of Boolean rings to general topology, trans. Amer.Math.Soc, 41(1937) 375-481.
- [13] R.Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20(1945) 51-61.
- [14] R.Vaidyanathaswamy, set topology, Chelse Publishing Company, 1960.
- [15] V.Zaitsev, On certain classes of topological spaes and their bicompactification, Dokl. Akad. Nauk. SSSR., 178(1968) 778-779.