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Abstract 

In this paper, the existence of a unique solution of mixed integral equation (MIE) of the first kind is considered in the 

space
2 [ 1,  1 ] (0, )L C T  , T< 1. The integral term of position, in 

2 [ 1,  1],L   has a discontinuous kernel, while the 

integral term of time, in (0, ),C T has a continuous kernel. Using a numerical, we have system of Fredholm integral 

equations (SFIEs) of the first find. Then, using Krein's method, the solution of the integral system is obtained in the form 

of spectral relationships (SRs) of eigenvalues and eigenfunctions.  Many special cases are considered and many 

applications in fluid mechanics and contact problems are discussed. 
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1. INTRODUCTION 

Singular integral equations of the first kind   have received considerable interest in the mathematical literatures, because of 

their many field of applications in different areas of sciences, for example see [1- 4]. The solution of these IEs can be 

obtained analytically using one of the following methods:  Cauchy method [5], potential theory method [6], orthogonal 

polynomials method [7], integral transformation methods [4-7] and Krein's method [8].  More information for the spectral 

relationships and its using in mathematical physics problems can be found in [9-14]. 

Consider the MIE of the first kind  
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Under the dynamic condition 
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The function 
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 is continuous and positive for 
   ,   v  0

 and satisfies the following asymptotic equalities  
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The MIE (1.1), under the condition (1.2), can be investigated from the contact problem of a rigid surface
  ,G 

 having 

an elastic material occupying the domain
   - ,   a a

, where  
 xf    is describing the surface base of a stamp. This 

stamp is impressed into an elastic layer surface by a variable known force
 t

,
    0,  ,   1t    

, whose 

eccentricity of application 
  e t

, that case a rigid displacement 
 t

. Here, G  is called the displacement magnitude 

and   is Poisson's coefficient see [11, 12]. 

In order to guarantee the existence of unique solution of (1.1), we assume, for the two constants E and D, the 

following conditions:  

(i) The kernel of position satisfies 

1

2  a   a
2

 - a  - a

  
    .

x y
k dxdy E



 
 

 
 

                

(ii) The positive continuous kernel, which represents the resistance force of the material, 

      ,  0, 0,F t C    
  and satisfies 

 ,  . F t D 
  

(iii)  The continuous function of time 
   0,t C  

 , while the position function 
   2x ,f L a a  

 and

     2, ,  0, .f x t L a a C   
 

(iv)  The unknown potential function 
 ,x t

 satisfies Hölder condition with respect to time and Lipschitz condition 

with respect to position.  
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In the remainder part of this work, we use a quadratic numerical method in (1.1) to obtain linear SFIEs of the first 

kind. Then, using Krein’s method, with the aid of Chebyshev polynomials of the first and second kind with its properties,   

the solution of SFIEs can be obtained in the form of eigenvalues and eigenfunctions. The eigenfunctions, in this work, 

take the form of Chebyshev polynomials of the first and second kind. Many special cases are derived and discussed from 

the work. Moreover, some applications in contact problems and fluid mechanics are considered. 

2. System of FIEs. If we divide the interval [0,T], 1         0  t  as 0 10 =  Nt t t    
, when 

,    0,1, 2, ,  kt t k 
 . The MIE (1.1) takes the form, see [2] 

           
 t  a  a

, k
 0  -a  -a

0
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F t k x y y dyd u F k x y y dy f x     


   
       (2.1) 

In (2.1) we neglect the error term, 
 1  pO 

 where jh max ,   1  j j jh t t 
. The constant ju

 defined as 

the characteristic number, see [2]. Also we used the following notations 

         ,, , , , , .j jx t x F t t F f x t f x   
 

The boundary condition (1.2), becomes  

 
 a

 -a
 k kx dx 

         ( k  are constants ),                                                                  (2.2) 

Let, in the kernel of (1.1), 1m   and 
 

, such that the term 
 x y

 is very small , then using the  famous 

relation [7]  
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       ( d is a constant ).                                                         (2.3) 

 The formula (2.1), with the aid of (2.3), becomes  
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                                      (2.4) 

The formula (2.4) represents linear SFIEs of the first kind with logarithmic kernel. To  

obtain the solution, we use Krein’s method, see [8, 9].    

2. PRINCIPAL OF KREIN’S METHOD  

The corresponding solution of (2.4), under the condition (2.2), using the principal Krein’s method for even and odd 

function, respectively, is given as  
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and 

 a  a

 , 2 2 2 2 2 x  0

(y)2  
 (x)  .

    
j j j

dgd u du
u F

dx u x u y


 

 
 

  .                                         (2.6) 

Here,  in (2.5), (2.6) we define  

 
    u  u

2 2 2 2 0  0

      2 2
    ln( + ) .

     

g y dy g y dyd
u u d

u duu y u y

  
   

   
                                                 (2.7)          

and 

  ( ) =  (x)  (x), ( )= (x); (x) (x) + (x),j j jg x g g g x g                 

( )  (x); ( ( , ), 1,  2, , , 1,  2,   ,  ).x x a a j                                                          (2.8)

 

3. METHOD OF SOLUTION  

To obtain the solution of (2.5) and (2.6) we state the following theorem 

Theorem 1: The spectral relationships for the SFIEs (2.4) with logarithmic kernels, under the conditions (2.3), take the 

form  

 2
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     (3.1) 

where  
( )

jn x
 , j = 1, 2, …,   are the Chebyshev polynomials of the first find of order n . 

Proof:  The proof of (3.1) depends on the following lemmas  

Lemma 1: For all positive integers jn
, 1a  , we have 

            1, 0 0,12 2 22
 1

1
  2    2 1   ln    .   2  1  

2j j jn n j nu
u u n u d u





 
        

      (3.2) 

where 

   , 

 jn x
 


 are Jacobi polynomials. 
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 Proof: to prove (3.2) let 

 
 2 (y) ( );ng y  

  2 (x)n
 are the Chebyshev polynomials of the first find, then (2.7) can 

be written in the form  

 
  u  2

 
2 2 0

2 2
( ) ( )  ln( + ) ( ) , .

    
j

n

n n n n

s dsd
u D u u d D u D u

u du u s

 
    

  


                                  (3.3) 

 

Using the substation uts   and the relation  

2
2 (x) (2 1)

j jn n x  
 , we have 

       
   

1
2

 1  
2 2 2

 0
  1     2   1 n nD t t u dt



   
.                                (3.4) 

Using the famous relation between Chebyshev polynomials
( )

jnT x
, Legendre polynomials 

( )
jn x

 and Jacobi 

polynomials

   , 

 jn x
 


, see [15] 
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2 22
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,                                 (3.5) 
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j j jn n nx x x   

, 

  the formula (3.5), yields  

      1, 0 2

 ( ) =    2  1 
2

n nD u u
 

 
                            (3.6) 

Also, the first derivative of (3.6) takes the form  

 
 

(0,1) 2

 (  1)

(u) 
 P 2 1

 

n

n

dD
n u u

d u
  

 ,  
n

 = 1, 2,…; ,  (   = 1, 2, …, N)                                     (3.7) 

 ( 

   , 
   0n x
 

 
 for negative integer ) . 

Finally, introducing (3.6), (3.7) in (3.3) , we obtain the required result. 

Corollary1:Putting, in (3.3), 1u   and then using the relation 

   
 

 
, 1

1
! 1

n

n

n

  



  
 

 
, we have         

   1 2 ln 2 , (  (.)is the Gamma function).nD n d  
                                                             (3.8) 
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Corollary2: The value of the second derivatives 

ndDd
u

du du

 
 
    is given by  
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   .                            (3.9)  

Lemma 2: The value of the following integral  
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                                                                (3.10) 

takes the form  
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.                             (3.11) 

2( 2 1; 1,2, ; 1,2, , )y x n      

Proof: For proving the lemma, we rewrite (3.10) in the form  
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   .                                               (3.12) 

Using, in (3.12), the substitution  zxyu  12,12 22
 ,  to have 

     

         
   

0,1 1,21 1 1
( 1) ( 2) 21 1

( ) ( ) ,
2 2 2 2 2

n n n
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z z z
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A x A z

y z y z y z

    
  

   
                     (3.13) 

If we put  vzy  11  , then (3.13) yields  

     
1 1

0,1
2

1

0

1 1 1 1
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If we use the famous formulas [15]  

     
1

1 ,1
3 2
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    (3.15) 

and 

   , 1
, 1;

2
n

n v
v F n n

n

  
 

   
        

  
                                                         (3.16) 

Here,    3 1 2 3 1 22
, , ; , ; ; 0, 0 ,e eF z R R r         is the generalized hypergeometric series and  , ; ;F z    is 

the hypergeometric Gauss function, the first integral term of (3.14) becomes  

     
 

 
   

1 11
2 22

1
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n
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                                                (3.17) 

 

Also, using the same way, the second and third integral term of (3.14), yield 
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             (3.18) 

  and 
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1
2

,
 1 11,2

2 1 0
2

1 ! 2
1 1 1

1 11 1

n

n

n z
v z v dv

n zn z n

 



  
                                 (3.19) 

Introducing the three formulas (3.17) - (3.19) in (3.13) the lemma is proved. 

Finally, to prove the theorem, we write (3.11) in the Chebyshev polynomials  form, for this purpose, we must consider 

the following famous formulas, see [15, 16]  

 (i)  Relation between Jacobi and Gegenbauer polynomials 

1-     
   

   

 
 1 1

2 2

1
, 22

22 1 ,
x

n n
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, 22
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x C x
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(ii) Relation between Chebyshev and Gegenbauer polynomials 

3.        
0

2
lim ; 1 .n nC x x n

n







                                                             

Using these famous relations in (3.11), one has  
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2

2

1
, 1 .

1

n

n

n x
A x n

x

 
 


         ,                    (3.20) 

Introducing (3.20) and (3.3) in (2.5) , the theorem is proved. 

 By using the same way, we can prove this theorem 

Theorem 2: The spectral relationships for the SFIEs with the kernel defined by (2.3) and the known function is odd is 

given by  

     
1

, 2 1 2 1

0 1

1
ln ; 1, 1,2, ,

2 1jj j n n

J

u F d s ds x n
x s n


 

 

 
       

   
            (3.21)  

The proof of theorem 2 can be obtained directly by following the same way of theorem 1.■ 

4. CONCLUSION AND RESULTS 

 From the above results and discussion, the following may be concluded  

(1) The contact problem of a rigid surface of an elastic material, when a stamp of length 2a  is impressed into an elastic 

layer surface of a strip by a variable   , 0 1t t     , whose eccentricity of application  te ,represents MIE of the 

first kind.  

(2) The quadratic numerical method used transforms the MIE in position and time into SFIEs in position. Moreover, the 

SFIEs depend on the number of derivatives of  ,F t   with respect to time  , 0, , 1t t       . 

(3) The displacement problems of ant plane deformation of an infinite rigid strip with width 2a  , putting on an elastic 

layer of thickness  h  is considered as a special case of this work when 1t  ,  , 1F t   ,  ,f x t   and 

   ,1 .x x    Here   represents the displacement magnitude and  x  the unknown function represents the 

displacement stress. 

(4) The problems of infinite rigid strip with width 2a  impressed in a viscous liquid layer of thickness h , when the strip 

has a velocity resulting from the impulsive force 0 , 1iwtv v e i   , where  0v  is the constant velocity , w  is the 

angular velocity resulting rotating the strip about z-axis  are considered as special case of this work , when  ,F t    

constant , and 1t  see [4] . 

(5)In the discussion (3) and (4) , when h  , this means the depth of the liquid ( Fluid mechanics ) or the thickness 

of elastic material (contact problem ) becomes an infinite . 

(6)The three kinds of the displacement problem, in the theory of elasticity and mixed contact problems, which discussed 

in [4,7] ,are considered special cases of this work . 

(7) Many important relationships can be derived from (3.1)  



Vol-2, Issue-9 PP. 1397-1408                                                                                                  ISSN: 2394-5788                                     

              

 

1405 | P a g e                   3 0  S e p t e m b e r  2 0 1 5                w w w . g j a r . o r g  

   If 2 2

2 2

sin sin
2 , , .

sin sin
j j

x y
n m

a a

 

 
    And if   2 2

2 2

tan tan
2 1, , ,

tan tan
j j

x y
n m

a a

 

 
      we have the 

following SFIEs                           

   ,

0 2

1
ln

2 sin
j j j k

j

u F d d h



 


   


 

 
  
 
 

                         (4.1) 

The above system leads to the following SRs  
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  (4.2) 

and 
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, 2 1
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2 1 tan2 sin 2 cos cos
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ma

j j m
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  ( 0m  )         (4.3) 

(ii) Differentiating (3.1) with respect to x  , we have  

 
 , 1

2 2
0

j

ya
n a x

j j n a
j a

dy
u F U

y x a y
 

 




 
        1n  

 
,

2 2
0

0

a

j j

j a

dy
u F

y x a y 


 

                                             (4.4) 

where  
a
x

nU


 are the Chebyshev polynomials   of the second kind. 

Also (4.4) yields  
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, 2 2
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                         =     
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               (4.5) 
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2 2
12 2

2

2 2

tan
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sec .tan 0

nec U n
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         (4.6) 

(8)   The mixed integral equation with Carleman kernel can be established from this work by using the following relation  

 ln , ; 0 1,x y h x y x y





                               (4.7) 

  where        yxyxyxh  ln,


  is a smooth function. The importance of Carleman kernel came from the 

work of Arutiunion [17] who has shown that, the contact problem of nonlinear theory of plasticity, in its first 

approximation reduce to  FIE of the first kind with Carleman kernel . 

(9) The relation between the eigenvalues n   and the corresponding Chebyshev polynomial
nT     are obtained in the 

following figures                      

 

 

                        Fig. 1 n=5 Fig.2: n=10 
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Fig.3: n=30 

 

                            Fig.4.6: n=15                                           

                            

5. REFERENCES 

[1] C. Constanda, Integral equation of the first kind in plane elasticity, J. Quart. .Appl. Math. L (1) (4) (1995), 783 – 

791. 

[2] M. A. Abdou, On asymptotic methods for Fredholm – Volterra integral equation of the second kind in contact 

problems, J. Comp .Appl. Math. 154 (2003), 431 – 446. 

[3] M. A. Abdou, F. A. Salama, Volterra – Fredholm integral equation of the first kind and spectral relationships, 

Appl .Math. Comput. 153 (2004),141 – 153. 

[4] V. M. Aleksandrov and E. V. Kovalenko, Problems in Mechanics Media with Mixed Boundary Conditions, 

Nauka Moscow, 1986 

[5] N. I. Muskelishvili, Singular Integral Equations, Noordhoff, Netherland 1953 

[6] C. D. Green, Integral Equation Methods, New York, 1969 

[7] G, Ya. Popov, Contact Problems for a Linearly Deformable Base, Kiev, Odessa, 1982 

[8] M. A. Abdou, N. Y. Ezz-Eldin, Krein’s method with certain singular kernel for solving the integral equation of 

the first kind, Period, Math. Hung. Vol. 28, No. 2 (1994), 143 - 149. 

[9] S. M. Mkhitarian M. A. Abdou, On different methods of solution of the integral equation for the planer contact 

problem of elasticity, Dakl. Acad. Nauk. Arm. SSR 89 (2) 

 (1990),59-74. 

[10] M. A. Abdou, Spectral relationships for integral operators in contact problem of impressing stamps, Appl. Math. 

Compute. 118 (2001) 95-111 

[11] M. A. Abdou, Spectral relationships for the integral equation with Macdonald kernel and contact problem, Appl. 

Math. Compute. 125 (2002) 93-103 

[12] M. A. Abdou, Integral equation of mixed type and integrals of orthogonal polynomials, J. Comp. Appl. Math. 

138 (2002) 273-285 



Vol-2, Issue-9 PP. 1397-1408                                                                                                  ISSN: 2394-5788                                     

              

 

1408 | P a g e                   3 0  S e p t e m b e r  2 0 1 5                w w w . g j a r . o r g  

[13] M.A. Abdou, M.B. Soliman, A main theorem of spectral relationships for  Volterra -   Fredholm   integral 

equation of the first kind and its applications,  Published online 19 January 2010 in Wiley  Inter Science Math. 

Meth.  Appl. Sci. 

[14] M. A. Abdou and M. A. Elsayed, Potential theory method and spectral relationships of a generalized Macdonald 

kernel in some different domain, Life Science Journal 2014;11(8) 

[15] I.S. Gradstein and I. M. Ryzhik, Table of Integrals Series and Product, fourth edition, England Academic Press, 

1980 

[16] G. Bateman, A. Ergelyi, Higher Transcendental Functions, T.2. Nauk Moscow, 1974 

[17] N. K. Arutiunion, Plane Contact Problem of the Theory of Creep, J. Appl. Math. Mech., 23 (1959), 901 - 923. 

 

 

 

 


