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ABSTRACT 
The purpose of this study is therefore, to apply a statistical downscaling method and assess its strength in reproducing current climate 

for Alexandria maximum and minimum temperature at north coast of Egypt.Statistical downscaling model (SDSM) is used to describe 

the linkage between climate simulations given by a global circulation model, GCM, (CanESM2) and the local temperature data. Data 

for maximum and minimum daily−temperature records for Alexandria station in Egypt were considered duringthe period of 30 years 

(1980−2009). Analysis results have demonstrated that the minimum and maximum temperatures tend to increase during the first 30 

years (1980−2009). The significant NCEP reanalysis data such have been used to develop the SDSMs for the linkage between the 

GCM outputs and the local temperatures. They have been then applied to construct the different RCP scenarios of the maximum and 

minimum temperatures until year 2100. Results have indicated that RCP 4.5 is the best one with increasing in both Tmax and Tmin 

based on baseline period (1980-2009) except in spring season the most periods are under estimation in all scenarios. Maximum 

temperature of RCP 4.5 stabilization scenario will increase by 0.88° C in the 2011-2040, 1.62° C in 2041-2070 and 1.98° C by the end 

of the century. Also RCP 4.5 minimum temperature scenario will increase by 1.52°C in the 2011-2040, 2.34°C in 2041-2070 and 

2.75°C by the end of the century.  

Key wards: Climate change, Statistical down scaling, RCP scenarios, Maximum and minimum temperature. 

1 INTRODUCTION 

Weather is the state of the atmosphere at a given time whilst climate is the average weather over a period of time (Thorpe, 2005). Even 

though the annual periodicity in weather patterns, the Earth’s climate has changed many times during the planet’s history, with events 

ranging from ice ages to long periods of warmth (Yehun, 2009). 

Human activities, primarily the burning of fossil fuels and changes in land cover and use, are nowadaysbelieved to be increasing the 

atmospheric concentrations of greenhouse gases. This changes energy balances and tends to warm the atmosphere which will result in 
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climate change IPCC reports indicate that mean annual global surface temperature has increased by about 0.3 - 0.6 o C since the late 

19th century and it is expected to further increase by 1–3.5°C over the next 100 years (IPCC , 2007). 

The scenarios of Climate change consider initial source of information for estimating plausible future climate are developed from 

Global Climate Models (GCMs). General circulation models or global climate models (GCMs), which are advanced mathematical 

models used to simulate the present climate and project future climate with forcing by greenhouse gases and aerosols, are the primary 

tool for capturing global climate system behaviour (Christensen et al., 2007).The climate change information needed for impact and 

adaptation studies is at a much finer spatial scale than that provided by most climate models (whether global or regional) . For regional 

climate-change impact studies, GCMs are problematic due to their lack of detailed regional information (IPCC 2007). 

Consequently, large-scale GCM scenarios should not be used directly for impact studies (Schubert and Sellers,1997), to bridge the gap 

between the coarse spatial resolution of climate model output and the need for weather information at a higher resolution, downscaling 

methods have been developed. Downscaling is a process of transforming this coarse information to a finer spatial resolution. 

There are two main approaches for downscaling: dynamical (DD) and statistical(SD) (Christensen et al., 2007; Fowler et al., 2007). 

The SD method establishes statistical relationships between large-scale climate information and local/regional variables (Hewitson and 

Crane 1996; Wilby et al. 2004), whereas DD employs regional climate models (RCMs) for limited regions withboundary conditions 

from GCM simulations. Both downscaling methods have strengths and limitations. Wilby et al. (2002) summarize some characteristics 

of SD and DD. Both SD and DD are dependent on GCM boundary forcing, domain size and location.Fowler et al. (2007) reviewed 

downscaling techniques and concluded that dynamical downscaling methods provide little advantage over statistical techniques, at 

least for present day climates. Given the advantages of being computationally inexpensive, able to access finer scales than dynamical 

methods and relatively easily applied to different GCMs, parameters and regions (Cubasch et al.,1996; Timbal et al., 2003; Wilby et 

al., 2004; Wood et al., 2004). SD methods use Empirical statistical methods derive relationships between large-scale atmospheric 

variables (predictors) and observed local weather variables (predictands). These relationships are then applied to equivalent predictors 

from climate model data (B´ardossy and Plate,1992; von Storch et al., 1993; Wilby et al., 1998a,b; Zorita and von Storch, 1999; 

Beckmann and Buishand, 2002, Karl et al., 1990; Busuioc et al., 2001; Christensen et al., 2007). These relationships are applied to 

downscale future climate scenarios using GCM output predictors. SD methods can be classified basically into three types (Wilby et al., 

2004)regression models (transfer functions), weather generators and weatherclassification. In general, SD methods which combine 

these techniques are often most effective (Christensen et al., 2007).The statistical down-scaling model (SDSM) incorporates both 

deterministic transfer functions and stochastic components (Wilby and Wigley, 1997; Wilby et al., 2002). SDSM has been widely 

applied in SD studies for both climate variables and air quality variables (Diaz-Nieto and Wilby, 2005; Dibike and Coulibaly, 2005; 

Khan et al., 2006; Wetterhall et al., 2006; Gachon and Dibike, 2007; Prudhomme and Davies, 2009; Wise, 2009), and has been 

recommended by the Canadian Climate Impacts and Scenarios (CCIS) project. (http://www.cics.uvic.ca). 

Comparisons between the SDSM and other downscaling methods have shown that the SDSM performed well in reproducing observed 

climate variability (Dibike and Coulibaly, 2005; Diaz-Nieto and Wilby, 2005; Khan et al., 2006; Wetterhall et al., 2006; Gachon and 

Dibike, 2007; Prudhomme and Davies, 2009). For example, Khan et al. (2006) compared three downscaling methods, SDSM, Long 

Ashton Research Station Weather Generator (LARS-WG) model and an artificial neural network (ANN) for downscaling daily 

precipitation and maximum and minimum temperatures in a watershed of Canada and found SDSM performed the best. Similar results 

were also reported by Dibike and Coulibaly (2005). Although both SDSM and LARS-WG were able to reproduce mean daily 

precipitation reasonable well, SDSM performed better in simulating variability of precipitation, and better than the perturbation 

method in the Thames Valley, UK (Diaz-Nieto and Wilby, 2005). Wetterhall et al. (2006) evaluated four SD methods for daily 

precipitation in three catchments located in southern, eastern and central China and northern Europe, and showed that SDSM 

performed best. 

Chaleeraktrakoon and Punlun (2010) are studied and analysed the variability of observed temperature data for the Chi and Mun river 

basins and described the linkage between climate simulations given by a global circulation model, GCM, (HadCM3) and the local 

temperature data, based on an accepted statistical downscaling model (SDSM). Results have indicated that the range of the future 

minimum and maximum temperatures is wider than that of the current ones. 

Cheema et al. (2011) investigated of the recent trend of global warming for Pakistan to test the reliability of future data generation by a 

statistical downscaling model ―SDSM‖. The evaluation has been performed for the period 1991-2010. There was a significant increase 

in temperature on the annual basis but the monthly change is not significant according to the Mann-Kendall test. The result showed a 

good accordance of the projected temperature with real time data. Different statistical techniques were applied to investigate the trend 

and significant change in minimum temperature. The strong correlation suggested that SDSM can be used with reasonable level of 

confidence to obtain future projections of night time temperature for the country. 

http://www.cics.uvic.ca/


Vol-3, Issue-8 PP. 694-712                                                                                                        ISSN: 2394-5788 

                                                           

  

696 | P a g e                       3 0  A u g u s t  2 0 1 6                  w w w . g j a r . o r g 

 

Ayalew et al. (2012) assess and quantify the magnitude of future changes of climate parameters using Statistical Downscaling Mode 

(SDSM) in Amhara Regional State in Ethiopia. Both maximum and minimum temperatures showed an increasing trend; and the 

increase in mean maximum and minimum temperature ranges from 1.55°C - 6.07°C and from 0.11°C - 2.81°C, respectively in the 

2080s compared to the base period considered (1979- 2008). 

General circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily 

series rainfall and temperature for hydrological modeling (Hassan et al. 2014). The statistical downscaling models are used to generate 

the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of 

Malaysia. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry 

spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general 

increasing trend in the mean daily temperature values.  

Babel and Turyatunga (2015), using Statistical Downscaling Model (SDSM) v4.2 to downscale low-resolution future climate data 

obtained from general circulation model HadCM3 for two SRES scenarios, A2 and B2. In the western Uganda agro-ecological zone, 

the annual average temperature is expected to increase by between 0.69–2.46 and 0.66–1.78 °C under the A2 and B2 SRES scenarios, 

respectively, in the three future periods of 2020s, 2050s, and 2080s relative to the base period (1961–1990). Monthly average 

temperatures are expected to increase for most of the months but will slightly decrease for the month of November under both 

scenarios. The area of study is among Mediterranean region where mean annual temperatures are likely to increase more than the 

global mean, with the largest warming in summer and annual precipitation as well as the annual number of precipitation days very 

likely to decrease (Christensenet al. 2007, Alcamo, et al. 2007). 

The aim of this study is using statistical downscaling method to study maximum and minimum temperature for Alexandria station at 

north coast of Egypt using SDSM model during the period from 1980-2009. As well as using RCPs scenarios to assess the impact of 

future climate change on maximum and minimum temperature for this station during future climatic period 2011-2040, 2041-2070 and 

2071-2100. 

 

2 DATA AND METHODOLOGY 

This study was performed for Alexandria City, which is located in north Egypt (29.57°N, 31.12°W and -1.78 m below sea 

level).Alexandria is a semi-desert, characterized by only two seasons; hot dry summer from May to October and moderate mild winter 

from November to April with very little rainfall. The difference between the seasons is a variation in daytime temperature and changes 

in prevailing wind. Average annual temperature ranges between minimum of 14°C in winter and maximum of 30°C in summer(El-

Shafieet al.2011) 

2.1 Data used 
Three different types of data will be used in this study as follows: 

 Observed (historical) maximum and minimum temperature climatic data were available over the 30 year period from 1980 

until 2009 at Alexandria station.   This historical, data were obtained from the National Climatic Data Center 

(NCDC)http://www7.ncdc.noaa.gov/CDO/) 

 Large-scale predictor at a scale of 2.5° long.×2.5° lat. variables representing the current climate condition (1980-2009)are 

obtained from the National Center for Environmental Prediction and national center of atmospheric research (NCEP/NCAR). 

These lists of large-scale predictor variables that will be used in the downscaling process are presented in Table (1).The 

candidate predictor set contained 26 normalized daily predictors (describing atmospheric circulation, thickness and moisture 

content at the surface, geopotential heights at 850 and 500 hPa). 

 

 

 

 

 

 

http://www7.ncdc.noaa.gov/CDO/
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Table 1.List of (NCEP/NCAR) and RCP futures predictors. 

                       

No. 
Daily predictor variable description Code 

1 Mean sea level pressure mslp 

2 Mean temperature at 2m temp 

3 Near surface specific humidity shum 

4 Near surface relative humidity rhum 

5 500 hPageopotential  height p500 

6 850 hPageopotential height p850 

7 Relative humidity at 500 hPa r500 

8 Relative humidity at 850 hPa r850 

9 Airflow strength **_f 

10 Zonal velocity component **_u 

11 Meridional velocity component **_v 

12 Vorticity **_z 

13 Wind direction **th 

14 Divergence **zh 

**  represents variable values  derived from pressure fields near the surface at 500 hPa or 850 hPa heights (i.e., 

P_, P5 Or P8) respectively 

 

As with the Environment Canada predictor suite, all variables (except wind direction and precipitation) are expressed as z-scores using 

the mean and standard deviation of the baseline period 1961-1990. The results can be directly downloaded from the internet using the 

site: http://www.cics.uvic.ca/scenarios/sdsm/select.cgi. 

 Future climate scenarios data are obtained as output from the second generation Canadian Earth System Model (CanESM2) 

developed by Canadian Centre for Climate Modeling and Analysis (CCCma) of Environment Canada. The grid cell size is 

uniform along the longitude with horizontal resolution of 2.8° and nearly uniform along the latitude of roughly 2.8°.The 

CanESM2 outputs were downloaded for three different climate scenarios via, Representative Concentration Pathway (RCP) 

2.6, RCP 4.5 and RCP 8.5, which were used in this study. Both the CanESM2 output and NCEP/NCAR reanalysis project 

data have provided the same set of 26 predictor variables (Table 1) which were downloaded from Canadian Climate Data 

and Scenarios website (http://ccds-dscc.ec.gc.ca/).  

 

2.2 Methodology  
The Statistical DownScaling Model (SDSM) is considered decision support tool for assessing local climate change impacts using a 

robust statistical downscaling technique. Statistical DownScaling Model facilitates the rapid development of multiple, low–cost, 

single–site scenarios of daily surface. Statistical downscaling requires developing quantitative relationships between large-scale 

atmospheric variables/ GCM outputs (predictors) and local scale observed variables (predictands) (Wilby et al., 2004). 

Mathematically, this relationship can be written as (Dibike and Coulibaly 2005):  

Y = f (X)  

Where,  

Y = Predictand, X = Predictor and f = Transfer function which has to be determined empirically from historical observations.  

The Statistical Downscaling Model (SDSM) 5.2 was used in this study to downscale and project the future climate data. This model 

was downloaded from the website:  

(http://co-public.lboro.ac.uk/cocwd/SDSM/). 

SDSM is a downscaling tool developed by Wilby et al. (2002) for assessing the impacts of local climate change using statistical 

downscaling technique and is a hybrid of the stochastic weather generator and regression-based methods (Liu et al., 2011). The SDSM 

software reduces the task of statistically downscaling dailyweather series into following discrete steps: quality control and data 

http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
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transformation;screening of predictor variables;model calibration;weather generation (using observed predictors);statistical 

analyses;graphing model output and scenario generation (using climate model predictors). 

3 RESULTS 

3.1 Observed analysis 
Thesequence of daily maximum and minimum temperature data of Alexandria station in the north coast of Egypt was collected. The 

periodof the available temperature records is 30years (1980−2009).The daily temperature data havebeen statistically investigated for 

theirtemporal variations based on annual time intervals to avoid theirinherent seasonality effect on the analyses.Figures1 and 4 present 

the trend of annualmaximum and minimum temperaturedata of Alexandria station. The figures show that theminimumand maximum 

temperaturesare increasing for the whole 30−yearperiod. However, the trend of maximum temperature decreased from1980 to 

1994(Figure 2) and increased from 1995 to 2009 (Figure 3). 

 

 

Fig 1:Maximum daily temperatures of Alexandria station (1980-2009). 

 

 

Fig 3: Maximum daily temperatures of 

Alexandria station (1995-2009). 

Fig 2: Maximum daily temperatures of  

Alexandria station (1980-1994). 
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Fig 4: Minimum daily temperatures of Alexandria station (1980-2009). 

 

3.2 Downscaling Daily maximum and minimum Temperature Time Series 

3.2.1 Predictors selecting 

From the 30 years of observed data representing the current climate, the first 20 years (1980–1999) are considered for calibrating the 

downscaling models while the remaining 10 years of data (2000–2009) are used to validate those models. The different parameters of 

model are adjusted during calibration to get the best statistical agreement between observed and simulated meteorological variables. 

For the cases of Tmax and Tmin, mean and variances of these variables corresponding to each month were considered as performance 

criteria. Selecting the most relevantpredictor variables (set of inputs) is the first and important taskin the downscaling process. In 

SDSM, screening of predictor variables is conducted through linear correlation analysis and scatter plots (between the predictors and 

predictand variables) and by investigating the percentage of variance explained by each predictand–predictor pair. Another important 

consideration is the annual cycle of the variables. Appropriate predictors are chosen by considering whether the identified variables 

and relationships are physically sensible for the particular experiment and study site (Dibike and Coulibaly 2007). Identification of the 

best predictors is presented below: All 26 atmospheric variables in the grid boxes (completely covering the entire study area) were 

selected as potential predictors. Subsequently, the most sensitive predictors for each predictand were identified through the screening. 

The list of selected predictor variables, their correlation coefficient and significance level for all the climatic variables and stations are 

given in Table 2.  The results showed that different predictands are affected by different atmospheric predictors. The daily maximum 

temperature is more sensitive to surface Meridional wind component, mean temperature at 2 m and 500 hPageopotential height. While, 

daily minimum temperature is more sensitive to surface divergence lag data by one day, Surface specific humidity and Mean 

temperature at 2 m lag data by one day. 

 

 

Table2. Large-scale climate predictors selected for computing surface meteorological variables. 

Predictand Predictors Partial r P value 

Tmax 

surface Meridional wind component (p__v) 

500 hPageopotential height (p500) 

Mean temperature at 2 m (temp) 

0.353 

0.323 

0.726 

0.000 

0.000 

0.000 

Tmin 

surface divergence lag the data by one day  (p_zhlag) 

Surface specific humidity (shum) 

Mean temperature at 2 m lag the data by one day (templag) 

0.291 

0.441 

0.667 

0.000 

0.000 

0.000 
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3.2.2 Calibration and validation 

The model consists of 12 monthly regression equations for tow downscaling experiments. The model was calibrated and validated 

using observations (1980–1999) and (2000–2009), respectively. The predictor variables were from the NCEP/NCAR reanalysis data. 

The predictands were from the observed surface variables. Figure 5 and table 4 show the performance in the calibrated period (1980–

1999). Figure 5 shows comparison of the downscaled and observed maximum and minimum temperature during the calibrated period 

for Alexandria station. As shown in the graphs, the model shows satisfactory agreement based on the mean simulated and observed, 

mean absolute error between the simulated and observed values and variance of observed and simulated of mean maximum and 

minimum temperature values.  

Table 3: Performance of SDSM during the calibration periods (1980-1999) 

Predictand Month SE R2 Predictand Month SE R2 

T MAX 

January 1.669 0.417 

T MIN 

January 1.985 0.43 

February 1.921 0.547 February 1.949 0.388 

March 1.83 0.641 March 1.998 0.405 

April 2.505 0.694 April 1.959 0.478 

May 2.346 0.657 May 1.713 0.496 

June 1.88 0.576 June 1.529 0.483 

July 1.338 0.366 July 1.287 0.363 

August 1.049 0.25 August 1.441 0.309 

September 1.25 0.538 September 1.831 0.366 

October 1.43 0.601 October 1.982 0.432 

November 1.617 0.617 November 1.928 0.571 

December 1.791 0.495 December 2.123 0.407 

R2: Coefficient of determination; SE: Standard Error. 
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 Fig 5:Observed and simulated SDSM-based downscaling for Tmax and Tmin 

during calibration period (1980-1999) 

 

The statistical parameters established during the calibration process that explain the statistical agreement between observed and 

simulated data are then used for model validation. The 10 years data (2000-2009) were used to validate the performance of the model. 

For temperature (Tmax and Tmin), the mean, meanabsolute error and variance corresponding to each month are used to evaluate the 

performance of the model. The results (Figure 6) indicate a reasonable agreement between the simulated and observed values at 

Alexandria station with maximum error about -5.5% and 4.5% for Tmin and Tmax respectively. 
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Fig6: Validation results SDSM-based downscaling for Tmax and Tmin(2000-2009). 

 

The performance of the SDSM model was evaluated based on different statistical methods such as correlation coefficient (R), 

coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE) and RMSE-observations standard 

deviation ratio (RSR) value. The results obtained from these evaluation criteria revealed that the SDSM performed well for 

downscaling maximum and minimum temperature. The lower RMSE and RSR value and higher NSE, R and R2 value clearly 

demonstrated the better efficiency of SDSM in simulating the daily temperature data (Table 4). The values of all statistical 

parametersas shown Table 4 for both temperature variables showing better efficiency of SDSM in generating the daily temperature 

data. 

 

Table 4.Statistical evaluation of SDSM performance for validation period (2000-2009). 

ALEXANDRIA R R2 
Nash-Sutcliffe 

Efficiency 
RMSE RSR 

Tmax 0.94 0.87 0.89 1.74 0.33 

Tmin 0.98 0.92 0.89 1.93 0.33 
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future climate change scenario simulated by the GCM. In this case, instead of the NCEP/NCAR reanalysis data used as input to each 

of the downscaling models earlier, the large-scale predictor variables are taken from CanESM2 simulation output. 

To determine the best suitable RCP scenario from the selected model (CanESM2) over the selected station, statistical analysis methods 

were used to give the goodness of fit measurements between the measured and projected data for all selected predictand variables 

(maximum and minimum temperatures) (Sayad et al. 2015). These statistical analysis methods such as Willmott index of agreement 

(d), Coefficient of Determination (R2), Root mean square error per observation (RMSE/obs) andMean bias error per observation 

(MBE/obs) can be shown in table 5.  

 

Table ‎5. Goodness of fit between observed and projected maximum and minimum temperature of period (2006-

2014). 

ALEXANDRIA 
T MAX T MIN 

d R2 RMSE/obs MBE/obs d R2 RMSE/obs MBE/obs 

RCP2.6 0.84 0.49 0.15 -0.02 0.93 0.75 0.18 0.02 

RCP4.5 0.84 0.51 0.15 -0.01 0.93 0.77 0.17 0.04 

RCP8.5 0.84 0.52 0.15 -0.02 0.92 0.71 0.19 0.02 

The results in the above table revealed that, the highest closeness between measured and projected scenarios was found for RCP4.5. 

The visual comparison between monthly means of observed and simulated data output from RCPs during period (2006-2014) is shown 

in Figure 7. All RCPs outputs are above normal from July to February, while the months from March to June are below normal for 

Tmax and Tmin with large difference in Tmax.  
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Fig 7:Monthly means of observed and simulated data output from RCPs for Tmax and Tmin during period (2006-2014) 

3.3.1 Projection of maximum temperature 

The downscaled maximum temperature clearly shows an increasing trend in mean annual maximum temperature in all the future time 

horizons and also for all the scenarios not shown. In Alexandria, the mean annual maximum temperature under the RCP 2.6 scenario 

will be increased by 0.76 °Cin the 2011-2040 and 1.14 °C in the 2041-2070and 1.23°C in the 2071-2100from baseline (1980-2009) 

and the seasonal variation can be shown in table 5 and monthly variation can be shown in Figure 8.  

 

Fig 8:Monthly mean observed (1981-2010) RCP2.6 Tmaxforthe future three periods. 
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Table 5.RCP 2.6 Seasonal variation of Tmaxfor the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 1.853538 2.168018 0.31448 2.354038 0.18602 

Spring -2.22234 -1.79176 0.430584 -1.65953 0.132229 

Summer 0.463249 1.066514 0.603264 0.935492 -0.13102 

Autumn 2.974792 3.14462 0.169828 3.324153 0.179534 

 

Under the RCP 4.5stabilization scenario, the maximum temperature will increase by 0.88°C in the 2011-2040, 1.62°C in 2041-2070 

and 1.98°C by the end of the century. The seasonal variation can be shown in table 6 and monthly variation can be shown in Figure 9.  

 

Fig 9. Monthly mean observed (1981-2010) RCP 4.5 Tmax for the future three periods. 

 

Table 6: RCP 4.5 Seasonal variation of Tmax for the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 2.074011 2.644512 0.570501 2.983735 0.339223 

Spring -1.99832 -1.19181 0.806518 -0.81071 0.381092 

Summer 0.638807 1.378406 0.739599 1.767716 0.38931 

Autumn 2.838264 3.676277 0.838013 4.041642 0.365365 

Under the RCP 8.5 scenario, this scenario shows the highest increase compared to the other two scenarios for all time windows.The 

maximum temperature will increase by 0.96°C in the 2011-2040, 2.16°C in 2041-2070 and 3.85°C by the end of the century. The 

seasonal variation can be shown in table 7 and monthly variation can be shown in Figure 10. 
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Fig 10. Monthly mean observed (1981-2010) RCP 8.5 Tmax for the future three periods. 

 

Table 7: RCP 8.5 Seasonal variation of Tmax for the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 2.155771 2.928399 0.772628 4.163265 1.234866 

Spring -1.88137 -0.91167 0.969701 0.951569 1.863237 

Summer 0.624555 2.179223 1.554667 3.924306 1.745084 

Autumn 2.974479 4.486538 1.512059 6.385661 1.899123 

 

3.3.2 Projection of minimum temperature 

The same to the maximum temperature, the projection showed the increasing trend of minimum temperature across all the periods. In 

Alexandria, the mean annual minimum temperature under the RCP 2.6 scenario will be increased by 1.43°C in the 2011-4020 and 

1.8°C in the 2041-2070 and 1.92°C in the 2071-2100 from baseline (1980-2009) and the seasonal variation can be shown in table 8 

and monthly variation can be shown in Figure 11.  
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Fig 11: Monthly mean observed (1981-2010) RCP 2.6 Tmin for the future three periods. 

 

Table 8.RCP 2.6 Seasonal variation of Tmin for the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 2.109504 2.457049 0.347545 2.624219 0.16717 

Spring -0.3425 -0.03156 0.310939 0.16953 0.201093 

Summer 1.262034 1.888887 0.626853 1.826786 -0.0621 

Autumn 2.698458 2.919335 0.220878 3.099288 0.179952 

 

Under the RCP 4.5 stabilization scenario, the minimum temperature will increase by 1.52°C in the 2011-2040, 2.34°C in 2041-2070 

and 2.75°C by the end of the century. The seasonal variation can be shown in table 9 and monthly variation can be shown in Figure 12. 

 
 

Fig 12: Monthly mean observed (1981-2010) RCP 4.5 Tmin for the future three periods. 
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Table 9.RCP 4.5 Seasonal variation of Tmin for the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 2.269133 3.086293 0.81716 3.510324 0.42403 

Spring -0.11467 0.573597 0.68827 0.960225 0.386629 

Summer 1.432615 2.258793 0.826178 2.656101 0.397308 

Autumn 2.521204 3.467021 0.945817 3.90842 0.441399 

 

Under the RCP 8.5 scenario, this scenario shows the highest increase compared to the other two scenarios for all time windows.The 

minimum temperature will increase by 1.62°C in the 2011-2040, 2.96°C in 2041-2070 and 4.86°C by the end of the century. The 

seasonal variation can be shown in table 10 and monthly variation can be shown in Figure 13. 

 

 
Fig 13: Monthly mean observed (1981-2010) RCP 8.5 Tmin for the future three periods. 

 

Table 10.RCP 8.5 Seasonal variation of Tmin for the three periods. 

Seasonal 

Periods 

2011-2040 2041-2070 2071-2100 

Form baseline Form baseline Previous period Form baseline Previous period 

Winter 2.467202 3.465414 5.06757 5.06757 1.602156 

Spring -0.05625 0.816531 2.450443 2.450443 1.633912 

Summer 1.443407 3.05498 5.159456 5.159456 2.104476 

Autumn 2.639091 4.536436 6.787578 6.787578 2.251142 

 

4 CONCLUSION  

The objectives of this study are to analyze the temporal variations of maximum, and minimum daily temperature data for Alexandria to 

describe the development of the widely used SDSM linkage between the climate simulations given by the CanESM2 and the local 

temperature records. The 30 year (1980-2009) temperature data at Alexandriastation has been considered. Obtained analysis and 

development resultsare concluded as follows: 

 The maximum dailytemperatures of Alexandria tend to slightly decrease during 1980-1994 period while the trend of the 

1995-2009 interval increases.  

 The minimum daily temperatures of Alexandria tend to increase during the whole period.  

 The commonly significant NCEP variables for the SDSMs ofthe daily maximum temperature are surface Meridional wind 

component, mean temperature at 2 m and 500 hPageopotentialheights. While, the commonly significant NCEP variables for 
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daily minimum temperature are surface divergence lag data by one day, Surface specific humidity and Mean temperature at 

2 m lag data by one day. 

 The calibration and validation of the developed SDSMs for the temperature occurrences have demonstrated that the observed 

and downscaled temperature means and variances generally agree with each other. 

 After evaluation of the different three RCPs scenarios, it is concluded that RCP 4.5 is the best one with increasing in both 

Tmax and Tmin based on baseline period (1980-2009) exceptin spring season the most periods are under estimation in all 

scenarios.  
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