

FURUTA INEQUALITY FOR CLASS OF 2N-PERINORMAL OPERATORS

Wanjala Victor

Department of Mathematics and computing, Kibabii University, Kenya. <u>wanjalavictor421@gmail.com</u> ORCID Id: 0000-0002-9207-5573 **Beatrice Adhiambo Obiero**

Department of Mathematics and computing, Rongo University, ,Kitere Hills, Kenya. adhiambobetty@rocketmail.com

ABSTRACT

In this paper, we introduce the class of (M,2n) and study some applications of Furuta inequality to this class. A bounded linear operator T is said to belong to class (M,2n) if T $*^{2n}$ T $^{2n} \ge$ (T *T) 2n for all positive integers n.

Keywords: Furuta inequality, Almost Class (Q), n-perinormal and 2n-perinormal operators.

1. INTRODUCTION

H denotes the seperable complex Hilbert space in this paper, while B(H) is the usual Banach algebra of all bounded linear operators on H. An operator $T \in B(H)$ is said to be perinormal or (M, n) if, $T *^n T^n \ge (T *T)^n$ for all positive integers n. Some results touching on class (M, n) were covered by Hongliang and Fei Zuo in (2) and by Wanjala Victor and Beatrice Obiero in (6). $T \in B(H)$ is said to be 2n- perinormal or (M, 2n) if $T *^{2n} T^{2n} \ge (T *T)^{2n}$ for all positive integers n. $T \in B(H)$ is said to be hyponormal if $T *T \ge TT *$ (1), p-hyponormal if $(T *T)^p \ge (TT *)^p$ for p > 0 (1). $T \in B(H)$ is said to be in class A (p, p) if $(|T *|^p|T|^{2p}|T *|^p)^{1/2} \ge |T *|^{2p}$ for p > 0 and A (p, q) if $(|T *|^q|T|^{2p}|T *|^q)^{q/p+q} \ge |T *|^{2q}$ for p, q > 0 (5). T = U|T| is the polar decomposition of T such that |T| = (T *T). The study of Furuta inequality has been widely used in applications in many classes of operators such as but not limited to Class A (p, p), A (p, q) and p-hyponormal operators. Furuta inequalities are stated below (1);

 $\begin{array}{l} \text{If } A \geq B \geq 0, \, \text{then for each } r_o \geq 0 \\ (B \ ^{ro} \ A \ ^{po} \ B \ ^{ro}) \ ^{1/}q_o \ \geq (B \ ^{ro} \ B \ ^{po} \ B \ ^{ro}) \ ^{1/}q_o \ \ (1) \\ (A \ ^{ro} \ A \ ^{po} \ A \ ^{ro}) \ ^{1/}q_o \ \geq (A \ ^{ro} \ B \ ^{po} \ A \ ^{ro}) \ ^{1/}q_o \ \ (2) \\ \text{holds for } p_o \geq 0 \text{ and } q_o \geq 1 \text{ and } (1 + 2r_o)q_o \geq p_o + q_o \end{array}$

2. MAIN RESULTS

Definition 1. Let $T \in B(H)$ be a 2n-perinormal operator if $T^{*2n}T^{2n} \ge (T^*T)^{2n}$ for some positive integer n, we denote this class by (M,2n).

The following result follows directly from the definition of 2n-perinormal operator.

Theorem 2. Let \in B(H) be a 2n-perinormal operator such that it doubly commutes with an isometric operator say S, then TS is a 2n-perinormal operator.

Proof.

T being a 2n-perinormal implies; T *2n T $^{2n} \ge (T *T)^{2n}$.

Let T doubly commute with S with S being isometric we have;

ST = TS, TS^{*} = S^{*}T with S^{*}S = I. Setting P = ST we obtain; P *2n P $^{2n} \ge (P * P)^{2n}$. Implying TS is a 2n-perinormal.

Theorem 3. Let $T \in B(H)$ be a 2n-perinormal operator, then the following hold;

(i). If T is invertible, T^{-1} is also invertible.

(ii). Any operator $S \in B(H)$ that is unitarily equivalent to T is also 2n-perinormal.

(iii). Suppose T - k is a 2n-perinormal operator for every k > 0, then T is a 2n perinormal operator.

Proof.

Proof for (i) and (ii) are straight forward, for (iii), we have;

 $0 \leq (T-k)^{*2n} (T-k)^{2n} - ((T-k)^* (T-k))^{2n} = T^{*2n} T^{2n} - (T^*T)^{2n} - 2k (T^{*2n} T^n + T^{*n} T^{2n} - (T^{*2n} T)^2 - (T^*T^{2n})^2) + 4k^2 (T^{*n} T^n - (T^*T)^n) = T^{*2n} T^{2n} - (T^*T)^{2n} - 2k (T^{*2n} T^n + T^{*n} T^{2n} - (T^{*2n} T^n)^2 - (T^*T^{2n})^2) + 4k^2 (T^{*n} T^n - (T^*T)^n) = T^{*2n} T^{2n} - (T^*T)^{2n} - 2k (T^{*2n} T^n + T^{*n} T^{2n} - (T^{*2n} T^n)^2 - (T^*T^{2n})^2) + 4k^2 (T^{*n} T^n - (T^*T)^n) = T^{*2n} T^{2n} - (T^*T)^{2n} - 2k (T^{*2n} T^n + T^{*n} T^{2n} - (T^{*2n} T^n)^2 - (T^*T^{2n})^2) + 4k^2 (T^{*n} T^n - (T^*T)^n) = T^{*2n} T^{2n} - (T^*T)^{2n} - 2k (T^{*2n} T^n + T^{*n} T^{2n} - (T^{*2n} T^n)^2 - (T^*T^{2n})^2) + 4k^2 (T^{*n} T^n - (T^{*n} T^n)^2) = T^{*2n} T^{2n} - (T^{*n} T^n)^2 + 2k (T^{*n} T^n - (T^{*n} T^n)^2) = T^{*2n} T^{2n} - (T^{*n} T^n)^2 + 2k (T^{*n}$

we have;

$$0 \leq \frac{1}{4k2} \{ (T-k)^{*2n} (T-k)^{2n} - ((T-k)^{*} (T-k))^{2n} \} = \frac{1}{4k2} (T^{*2n}T^{2n} - (T^{*}T)^{2n}) - \frac{1}{2k} (T^{*2n}T^{n} + T^{*n}T^{2n} - (T^{*2}T)^{n} - (T^{*}T^{2n})^{n}) + (T^{*n}T^{n} - (T^{*n}T^{n})^{n}) + (T^{*n}T^{n}) + (T^{*n}T^{n} - (T^{*n}T^{n})^{n}) + (T^{*n}T^{n} - (T^{*n}T^{n})^{n}) + (T^{*n}T^{n} - (T^{*n}T^{n})^{n}) + (T^{*n}T^{n}) +$$

when k $\longrightarrow \infty$ we obtain T $^{*2n}T^{2n} - (T *T)^{2n} \ge 0$.

Proposition 5. Let K_n be a set of all (M,2n) operators. Then $K_n \subset K_p$ for 0 .

Proof. Let $T \in (M,2n)$, then we have; $T^{*^{2n}}T^{2n} \ge (T^{*T})^{2n}$ we have 0 < p/n. Taking p/n we get; $(T^{*T})^{2p} = (T^{*^{2n}}T^{2n})^{p/n} \le ((T^{*T})^{2p})^{p/n} = (T^{*T})^{2p}$.

Theorem 6. If $T \in (M, 2n)$ for some positive integer n, then;

• $(|T|^{2n}|T^2|^{2n}|T|^{2n}) \ge |T|^{4n}$. • $(|T|^{2q}|T|^2)^{2n}|T|^{2q})^{q/n+q} \ge |T|^{4q}$ for every n, q > 0. • $|T^{2}|^{2n} \ge (|T^{2}|^{n}|T|^{4n}|T^{2}|^{n})^{1/2}$ • $|T^{2}|^{2q} \ge (|T^{2}|^{q}|T|^{4n}|T^{2}|^{q})^{q/n+q}$ for every n, q > 0. Proof. Since $T \in (M, 2n)$ and T = U[T] is the polar decomposition of T with U being unitary, we have; $T^{*2n}T^{2n} \ge (T^*T)^{2n}$, implies; $|T^{2n}| \ge |(T)^{2n}|$ with $|(T)^{2n}| = ((T * T)^{2n})^{1/2}$ Replacing in Furuta inequality (1) above, we have; Taking $A = |T^{2n}|$, $B = |(T)^{2n}|$, $r_o = n$, $p_o = 2n$ and $q_o = 2$. $A \ge B \ge 0$ implies $r_o \ge 0$, $p_o \ge 0$, $q_o \ge 1$. we equivalently have; $(1 + 2r_o) q_o = (1 + 2n)2 = 2 + 4n$. Also; $p_0 + 2r_0 = 2n + 2n = 4n$. Thus; $(1 + 2r_o) q_o = p_o + 2r_o$. We then have; $(|T|^{2n}|T|^2|^{2n}|T|^{2n})^{1/2} \ge (|T|^{2n}|T|^{2n}|T|^{2n})^{1/2} = |T|^{2n}$ that is; $(|T|^{2n}|T|^2|^{2n}|T|^{2n})^{1/2} \ge |T|^{2n}.$ Taking the following in Furuta inequality (1); A = $|T|^2$ and B = |T|, $r_0 = n$, $q_0 = \frac{n+q}{q}$, $p_0 = 2n$ We have: $(1 + 2r_o) qo - (p_o + 2r_o) = (n + q) \left\{ \frac{1 + 2q}{q} - 2 \right\} = \frac{n + q}{q} \ge 0$ implies; $(1 + 2_{ro})q_o \ge p_o + 2r_o$ Furuta inequality implies (1) $(|T|^{2q}|T^2|^{2n}|T|^{2q})^{q/n+q} \ge (|T|^{2q}|T|^{2n}|T|^{2q})^{q/n+q}$ that is ; $(|\mathbf{T}|^{2q}|\mathbf{T}^2|^{2n}|\mathbf{T}|^{2q})^{q/n+q} \ge |\mathbf{T}|^{2q}.$ Taking the following in Furuta inequality (2)

$$\begin{split} &A = |T|^2 | \text{ and } B = |T| \text{ , } r_o = n \text{ , } q_o = 2, p_o = 2n \text{ ;} \\ &\text{we obtain ;} \\ &(1 + 2r_o)q_o = 2 + 4n \text{ , } p_o + 2r_o = 4n \text{ , we have } (1 + 2r_o)q_o = p_o + 2r_o \\ &\text{hence ;} \\ &(|T|^2|^n|T|^2|^{2n}|T|^2|^n)^{1/2} \geq (|T|^2|^n|T|^{4n}|T|^2|^n)^{1/2} \\ &\text{That is ;} \\ &|T|^2|^n \geq (|T|^2|^n|T|^{4n}|T|^2|^n)^{1/2} \\ &\text{Further taking substitutions below in Furuta inequality (2) ;} \\ &A = |T|^2| \text{ and } B = |T| \text{ , } r_o = q \text{ , } q_o = \frac{n+q}{q} \text{ , } p_o = 2n. \\ &\text{We obtain } (1 + 2r_o)q_o \geq (p_o + 2r_o). \text{ Thus;} \\ &(|T|^2|^2|^2|^2|^2|^2|^2|^q|^{q/n+q} \geq (|T|^2|^q|T|^{4n}|T|^2|^q)^{q/n+q} \\ &\text{that is;} \\ &|T|^2|^{2q} \geq (|T|^2|^q|T|^{4n}|T|^2|^q)^{q/n+q}. \end{split}$$

REFERENCES

- [1] Furuta T., Invitation to linear operators from matrices and bounded linear operators on a Hilbert space. Taylor and Francis, London, 2001.
- [2] Hongliang Zuo and Fei Zuo., A note on n-perinormal operators, acta mathematica scientia, vol. 34B (1) (2014), 194-198.
- [3] Jibril , A.A.S., On Operators for which T * 2(T)2 = (T * T)2, international mathematical forum , vol. 5(46) ,2255-2262.
- [4] Md. Ilyas, Reyaz Ahmad and Ishteyaque Ahmad ., Applications of Furuta inequality on class of p-Hyponormal operators, international journal of mathematics and computer pplications research, vol.3 (1)(2013), 203-210.
- [5] Md. Ilyas and Reyaz Ahmad., Some classes of Operators related to p-hyponormal operator , advances in pure mathematics ,vol. 2, (2012), 419-422.
- [6] Wanjala Victor and Beatrice Adhiambo Obiero., On almost class (Q) and class (M,n) operators ,international journal of mathematics and its applications ,vol. 9(2) (2021), 115-118.